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Foreword

As quantuntheory enters itsecondcentury, it is ftting to examingust
how far it has come as a tool for the chemiBeginningwith Max Planck’s
agonizingconclusion in1900thatlinked energy emissiom discreet bundles
to the resultant black-body radiation curve, a body of knowledge has
developedwith profoundconsequences in owbility to understandnature.
In the early yearsguantumtheory was the providence ghysicists and
certainbreeds ophysical clemists. While physicistshoned andefined the
theory andstudied atoms and theircomponent syetns, physical chemists
began the foraynto thestudy oflarger,molecularsystems. Quatumtheory
predictions of these systamwere first verified through experimental
spectroscopicstudies in theelectromagnetic spectrurfmicrowave, infrared
and ultraviolet/visible),and, later, by nuclearmagneticresonancg NMR)
spectroscopy.

Over two generationsthese studieswere hampered by two major
drawbacks: lack of resolution spectroscopidata, and theomplexity of
calculations. This powerful theory that promised understanding of the
fundamental nature of molecules faced formidable challenge3he
following example may putthings in perspective fortoday’s chemistry
faculty, college seniors ograduate students: Agtle as 40years agoforce
field calculations on anolecule as simple dgetene was a four thve year
dissertation project. Thealculations werecarried out utilizing the best
mainframe computers in attempts to matdmndamentalfrequencies to
experimentalvalues neasured with a resolution of five to teravenumbers
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Vi Foreword

in the low infrared region!PostWorld War Il advances imnstrumentation,
particularly the spin-offs of the National Aeronautics an$pace
Administration (NASA) efforts, quickly changed the landscape bfgh-
resolution spectroscopic data. Laser sources andFourier transform
spectroscopy are twamotable advances, and thesbegan to appear in
undergraduate boratories in themid-1980s. Atthat time, only chemists
with access tosupercomputers were tealize thefull fruits of quantum
theory. This pastdecade’s advent of commercially available quantum
mechanicalcalculation packages,which run onsurprisingly sophisticated
laptop computers,provide approximation technology for all chemists.
Approximation techniquesdeveloped bythe early pioneers can now be
carried out to asnany iterations asecessary to produaeeaningfulresults
for sophomoreorganic chemistry studentsgraduatestudents, endowedhair
professors, andpharmaceutical researchers.  Theimpact of quantum
mechanical calglations isalso being felt in certain areas of thebiological
sciences, as illustrated in the results of conformational studibmlogically
active molecules.Today’s growth ofquantumchemistryliterature isas fast
as that of NMR studies in th#960s.

An excellent exampleof the introduction ofquantum chemistry
calculations in the undergraduamurriculum is found atthe author’'s
institution. Sophomoreorganic chemistry students are introduced to the PC-
Spartan+® program taealculate thelowest energy ofpossible structures.
The same program istilized in physicalchemistry tocompute thepotential
energy surface of theeactioncoordinate in simpleeactions. Biochemistry
students take advantage a#lculations teelucidate thepathways tocreation
of designer drugs.  This hands-on approach to quantum chemistry
calculations is not unique tthat institution. However, theflavor of the
department’sphilosophyties in quite nicely with the tone ofthis textbook
that is pitched atjust the proper level, advancedundergraduates and first
yeargraduate students.

Farrell Brown
ProfessorEmeritus of Chemistry
ClemsonUniversity



Preface

This text is designed as a practidatroduction toquantumchemistry for
undergraduate and graduate students. {Bx¢ requires a student to have
completed ayear ofcalculus, gohysicscourse inmechanics, and ainimum
of a year ofchemistry. Since thetext does not require amxtensive
background in chemistry, it is applicable aowide varietyof students with
the aforementionedbackground; however, the primatgrget ofthis text is
for undergraduate chemistry majors.

The textprovides studentswith a strongfoundation in the principles,
formulations, andapplications ofquantum mechanics inchemistry. For
some students,this is a terminal @urse in quantunchemistry providing
them with a basic introduction toquantumtheory and problensolving
techniquesalong with theskills to doelectronicstructurecalculations - an
application that idecomingincreasinglymore prevalent in alldisciplines of
chemistry. For students whaill take more advancedcourses inquantum
chemistry ineithertheir undergraduate agraduate programthis text will
provide asolid foundation that they can build furthknowledge from.

Early in the textthe fundamentals @fuantummechanics arestablished.
This is done in a way sahat students se¢he relevance ofjuantum
mechanics tochemistry throughout thedevelopment of quaum theory
through specialboxesentitled Chemical Connectian The questions in these
boxes provide anexcellentbasis fordiscussion in or out of thelassroom
while providing the sudent withinsight as to howtheseconceptswill be
usedlater in the textwvhen chemicamodels areactually developed.
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viii Preface

Students aralso guided intahinking “quantummechanically” early in
the text throughconceptual questions iboxes entitled Points of Further
Understanding. Like the questions in theChemical Connectiotoxes, these
questions provide an excellent basis fodiscussion in or out of the
classroom. These questions move studentsfrom just focusing on the
rigorous mathematical derivations antelp thembegin to visualize the
implications of quanturmechanics.

Rotational and vibrational speoscopy of molecules igliscussed in the
text asearly aspossible toprovide anapplication of quantum mechanics to
chemistry using model problems developed préously. Spectroscopy
provides for a means demonstrating how guantumechanics can besed
to explain andpredict experimentalobservation.

The last chapter of the text focuses on thederstanding and the
approach to doing modern day electronicstructure omputations of
molecules. Thesetypes of computations havieecomeinvaluabletools in
moderntheoretical andexperimental chemicalesearch. Theomputational
methods are discussed alongth the resultscompared to experiment when
possible to aide ifmaking sounddecisions as tavhattype of Hamiltonian
and basis set thashould beused, and itprovides a basis fousing
computationalstrategiesbased ondesiredreliability to makecomputations
as efficient apossible.

There are manyeople tothank in thedevelopment ofhis text, far too
many to listindividually here. Aspecialthanksgoes out to thetudents over
the years who have helped shape the approach used in thibased on
what has helped thetearn and develop interes the subject.

Terre Haute, IN Michael R. Mueller
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Chapter 1

Classical Mechanics

Classical mechanics ariseBom our observation ofmatter in the
macroscopic world. From these everyday observations, the definition of
particles is formulated. Irlassicalmechanics, a particle has a specific
location in space that can bedefined preciselylimited only by the
uncertainty of the measurement instruments used. If all of the forces acting
on the particleare accounted for, an exaehergy andtrajectory for the
particle canbe determined. Classicahechanics yields resultsonsistent
with experiment on macroscopiparticles; hence, anytheory such as
guantummechanicsnust yield classical results gaesdimits.

There are anumber ofdifferent techniquesused to solve classical
mechanicalsystemsthat include Newtonian and Hamiltonian mechanics.
Hamiltonian mechanics, though originaltieveloped forclassicalsystems,
has a framework that is particuladgeful inquantummechanics.

1.1 NEWTONIAN MECHANICS

In the mechanics of Sitsaac Newton, the equations of motion are
obtained from one of Newon's Laws of Motion: Change ofmotion is
proportional to the applietbrce and takes place in to@ection of theforce.
Force, F, is a vector that igqual to themass of theparticle, m,multiplied
by the acceleration vecta .

(1-1)



2 Chapter 1

If the resultantforce acting on the particle im@&wn, then the equation of
motion (i.e.trajectory) for theparticle can be obtained. Tlaeceleration is
the second timeéerivative ofposition,q, which is repesented as

_ dig
0g=—=-=3. (L2}
i 9

The symbolg is used as generalsymbol for positionexpressed in any
inertial coordinate system such @artesianpolar, or sperical. A double
dot on top ofa symbol,such asg, represents thsecond derivative with
respect to time, and single dobver a symbotepresents the first derivative
with respect tdime.

The systems consideredntil later in thetext, will be conservative
systems, and massesll be considered to be point masses. If a force is a
function ofposition only (i.e. no timelependence}hen theforce is said to
be conservative. Irconservative systems, the suof the kinetic and
potentialenergyremains constant throughout the motiddon-conservative
systems, thais, those for which théorce hastime dependence, aresually
of a dissipation type, such dsction or air resistance. Masses will be
assumed to have no volume but exist at a gdaent in space.

Example 1-1

Problem: Determine thdrajectory ofa projectile fired from a cannor
whereby the muzzle is at anglea. from thehorizontal x-axis andeaves
the muzzle with a velocity of,. Assumethat there is no air resistance.

Solution: This poblem is an examplef a separable problemthe equations
of motion can be solvedndependently in thehorizontal and vertical
coordinates. First théorces acting on the particlaust beobtained in the
two independentoordinates.
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1lorzemnal axis (x-ax150 F.o=mi=0

YVertieal pris (yaxisk F, = mi==mg

The forces generate twodifferential equations to be solved. Upon
integration, this results in the following trajectorfes the particlealong the
x and y-axes:

&= I =+ v, wose)r
V=—g,  F=g, w1l sinn‘llr—Jl-gr?

The constant, ang, represent firejectile at theorigin (i.e. nitial time).

1.2 HAMILTONIAN MECHANICS

An alternativeapproach to solvinghechanical problemthatmakessome
problems more tractable wafirst introduced in 188 by the Scottish
mathematician Sir William RHamilton. In this approach, the Hamiltonian,
H, is obtainedrom thekinetic energy, T, andhe potentiaknergy, V, of the
particles in a coservativesystem.

H=T4+V (1-3)

The kinetic energy is expressed as theptotuct of the momentum vector,
D, divided by two times thenass of eacparticle inthe system.

L

o

-y F-E% {13}

5]

The potentialenergy of theparticles will depend on the positions of the
particles. Hamilton determinedhat for ageneralized coordinatystem, the
equations of motion coultde obtainedrom the Hamiltonian and from the
following identities:
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Il' ]
|‘_-'"ri| =_£J'£=_P, (1.5
.,_-Bg'.fl ::l'.l'
and
ll' u
E'_HJ =ﬂ=q_ {1-5}
wop |

Simultaneous solution of thesdifferential equations through all of the
coordinates in the systewill result in thetrajectories fothe particles.

Example 1-2
Problem: Solve the same ghlem as shown in Example 1-1 using
Hamiltonian mechanics.

Solution: The firststep is to detenine theHamiltonian for theproblem.
The problem is stillseparable and thegrojectile will havekinetic energy in
both the x andy-axes. The potentiaknergy of theparticle is due to
gravitational potentiaénergy given a¥ = mgy.

.'. z_ b

oy il .
Hiervm hi=Te¥F= St — |+ mgy
leyom. im sz 7y

Now the Hamilton identities in Equations lamd 1-6 must beletermined
for this system.

e .
Lﬂw' =l=-p, It =g =—p,
= "'I.".-.F'J ¥ ! ¥ ‘A poa
1
fo : wpp
ok P . ! aff P,
- | ==X : | = o=
\,'E'F:_.'Pll::l. e : '-a'p"--"pllp L
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The above fomulations result intwo non-trivial differential equations that
are the same astained in Example 1-lising Newtoniamimechanics.

.-X:ZO j}:—g

Thiswill result in thesametrajectory as obtaineid Examplel1-1.

A= 5. 4 (v, oSl MfI -yt g, s0al :"s;.r3

Notice that inHamiltonian mechanics, initially thenomentum of the
particles istreatedseparatelyfrom theposition of the particlesThis method
of treating themomentumseparatelyfrom position will prove useful in
guantummechanics.

1.3 THE HARMONIC OSCILLATOR

The harmonic oscillator is an imgant modelproblem in chemical
systems todescribe theoscillatory (vibrational) motion along the bonds
between the atoms in a moleculén this model, the boné viewed as a
springwith a forceconstant of k.

Consider a spring with Borce constant ksuchthat one end of the spring
is attached to an immovable object sashawall and theother is attached to
a mass, n{seeFigure 1-1). Hamiltonianmechanics will be used; hence, the
first step is to determine thiElamiltonian for the problem. The mass is
confined to the x-axis and will have bdtimetic ard potentialenergy. The
potentialenergy is the square tife distance the spring is displac&dm its
equilibrium position, x,, times one-half of thepring force constant, k
(Hooke’s Law).

T R (L7
Per 7
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ancnoned

e
rm
i

< .

A

Figure [ The harmonic spring is sttached fo an immovable abject a8 one end and an
oacillating mess moat the other end. The constant &, corresponds to the point of zero
poiential energy. Assume the onky force acting on the mass m & aloag the horlzontal
AxES

Taking the derivative of the Hamiltonian (Equatidn7) with respect to
position and applyindgzquation 1-5 yields:

faR
I,Tl “kir-xz, b -p.
Ll "I.‘"

Taking the derivative of théedamiltonian (Equation 1-7) with respect to
momentum andapplying Equation 1-6 yields:

-

-X.

EH1|| _F
T )

The secondlifferentialequation yields trivial result:

ﬁ:x:x;
m

however, thefirst differential equation can be used to determine the
trajectory of themass m. The time derivative of momentum is equivalent to
the force, omass times acceleration.
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mTI - md—.z 1 (1-%a}

Pk
T=- —\I{:l: -} {1-8h)

The solution to thidifferential equation is well known. One solution is
given below.

ST = &y, + @ snlas )+ B eas(e) =

Another mathematicallyequivalent solution can be fourd utilizing the
following Euler identitiegi = v-1):

P R §1-10u)
and
¢ —enEk - RN X 11-10by

This results in the following mathematically equivalent trajectory as in
Equation1-9:

) =x, A B Ck LI

The value ok, ighe equilibrium lengttof the spring.Since theproduct
of ot must bedimensionless, the constamt must hawds ofinversetime

and must be thdrequency of oscillation. By taking the second time
derivative ofeitherEquation 1-9 orl-11 results in the followingexpression:

g (2] - AL ) {1121
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By comparing Equatiorl-12 with Equation [-8b, an expression far is
readily obtained.

ow - E [L-13p

lII K

Since the sine antbsinefunctionswill oscillate from +1 to —1the constants
a and b in Equation 1-9 ati#ewise the constants A amglin Equation1-11
are related to the amplitude apldase of motion of thenass. There are no
constraints on the valgeoftheseconstants, and the systermat quantized.

Chemical Connection

A diatomic molecule approximates the model just discussed such that the
mass of one atom 15 much larger than the other atom: such as hydrogen
bromide. In infrared speciroscopy, the absorbed infrared radiation results 1
trapsitions in both the wvibrational and rotational states of @ molecule,
Considenng only the wvibrational transitions, what would an infrared
spectrum of hydrogen bromide look like based on the classical result?
According to classical mechanics, would mfrared spectroscopy be a useful
| tool im chemistry?

A model camow bedevelopedhatmoreaccuratelydescribes a diatomic
molecule. Consider two massesy, amg), separated by apringwith a
force constant k and aaquilibrium length ofx, ashown inFigure 1-2. The
Hamiltonian isshown bé&w.

I 2
e ek |
|I||. N = +
Lo Xty .F’z} Zm, 2,
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l m;
St W e ]

- — "—";—1-
"-: X

Fipure J-2. Two matses are separated by a harmanic Sprmg wilth a force constant k. The
particles are confined (o the x-axm.  The podaisons al the partiches are designated as x;
and a, with %, cornesponding to the equilibriem spring length

Note that the Hamiltoniaappears to benseparable. Making a coordinate
transformation to a center-of-massordinatesystem can makihis problem
separable. Define r as thealisplacement of thepring from its equilibrium
position and s as the position of the center of mass.

rE.x2_xl "xO

MK FRLLY
o MHE *3

- {m, +m!}

As a result of the coordinateansformation, the potentianergy for the
system becomes:

Now the momentunp, anghb must bansformed to thenomentum in the
s and r coordinates. The time derivatives of r and s must be taken anc
related to the time derivatives xf ard

F=Xy - X, (1-14)
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|::|‘:'I_.:l:| -+ .'.I'I‘J.T:]

(1-15)

a=—
e, + i‘:':!}

From Equationsl-14 and 1-15,»pressions forx, and, iterms ofs and
¥ can be obtained.

i =s—[ S (116}
.I‘:HI +|"|'.';|

oy e —l ]r (L-17]
_I':"EI 'I-.I'.llz

The momentuntermsp, ancy, areow expressed in terms of the center of
masscoordinates s and r.

: MR A
Py =& m s —[411-

L PR

-

- -

. i KT -
Fr=ma, ST )

.
T

The reduced mass dtiie systemy, idefined as

kel

Bt + M1,
Thisreduces thexpressions fop, angh to ti@lowing:
py=msS—pur
and

- A T
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The Hamiltonian can now bevritten in terms of the center-of-mass
coordinatesystem.

- : AL B ) [
HLI'LF"PJI:{-;I. b é.};h b 2.,;-,-* =EI|:,..1I . m:].-e"' 4 l.l..u-"]+ ikr?

A further simplification can be made to ¢hHamiltoniarby recognizing that
the total mass ofthe system, M, is the sunmpf mph.e. M = m, + ™).

d

ez ax] plop 1
Hf.v,.'i',p,.p,}=i[Ms . uf ]..EH S PEELNRD

Recall that the coordinate s corresponds to thenter of mass of the
systemwhereas thecoordinate r corresponds to thisplacement of the

spring. This ensures that r and s are separable. It can be concluded that the
kinetic energyterm

pl

2m

mustcorrespond to the translation of the ensigestem in space. Since it is
the vibrational motion that isf interest, the kinetic term for theanslation
of the system can be neglected the Hamiltonia. The resulting
Hamiltonian that corresponds the vibrationamotion is agdfollows:

Hirp. b= 2’# ! ;kr* {1-13}

Notice that the Hamiltonian in Equatidh19 is idetical in form to the
Hamiltonian in Equation 1-8olved peviously. The solution can be inferred
from the previous resultrecognizing that when thespring is in its
equilibrium positiorx,, them=0 (refer to Equatiori-14).

At - aumizse] + boos{ex] = g™ 1 A {1-200)
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k
a = ||: {1-21
Y

This exampledemonstrates aumber ofimportanttechniques insolving
mechanical problems. A mechanical problem can at times be made
separable by arappropriate coordinatéransformation. This will prove
especiallyuseful in solving problems thainvolve circular motion where
coordinates can bmade separable hyansformingCartesian coordinates to
polar or spherical coordinates. Another more subtle point is to learn to
recognize aHamiltonian to which you knowthe solution. In chemical
systems, the Hamiltonian ofraoleculewill often have corponentssimilar
to othermolecules omodel problems fowhich the solution i&nown. The

ability to recognize these componsmwill prove important to solving many
of these systems.

PROBLEMSAND EXERCISES

[.1) Calculate the range of a projectile witmass 0f10.0 kgfired from
a cannon at an angle 89.0°from thehorizontal axis with a muzzle
velocity of 10.0 m/s.

1.2)  Using Hamiltonian mechanicdetermine theime it will take a1.00
kg block initially at rest to slide down d.00 mlong frictionless
ramp that has an angle4%.0° from thehorizontalaxis.

1.3)  Set up the Hamiltonian for a particle withreass m that i$ree to
move in the X, y, and z-coordinatiat experiences thgravitational
potential ¥ia,rz) = mgy. UsingEquations 1-5 and-6, obtain the
equations omotion ineach dimension.

1.4) Determine the fore constant of a harmongpring oscillating at50
sec’ that is attached to ammmovable object at one end the

following masses at the othend: a) 0.100 kg; b1.00 kg; ¢) 10.0
kg; and d)100.kg.



Classical Mechanics 13

15) Determine the oscillation frequency of'#N'°O bond that has a
force constant ofl 417 kg sec’”

1.6)  Showthat a potential of the general fofix) = a + &x ~ ¢’ is the
same aghat for a harmonic oscillator because it can be written as
WKy =V, + zkix - x,0'. Find k, V,, andx, in terms ofa, b, and c.



Chapter 2

Fundamentals of Quantum Mechanics

Classicalmechanics, introduced in thast chapter, isnadequate for
describing systems composefdlsmallparticles such aslectrons, atoms, and
molecules. What is missingrom classical mechanics is tlescription of
wavelike properties of matter that predominatesth small particles.
Quantummechanics takefto account the wavelike properties of matter
when solving mechanical problems. The mathematics and lawsratiqua
mechanics that mube used to explaiwavelikeproperties causa dramatic
change in the way mechanical problemsist besolved. In classical
mechanics, the mathematics can be directtyrelated to physically
measurabl@roperties such as forceyomentum, angosition. Inquantum
mechanics, the mathematittgat yieldsphysically measurablproperties is
obtainedfrom mathematicabperations with an indirect physicarrelation.

2.1 THE DE BROGLIE RELATION

At the beginning ofthe 20" century,experimentation revealed that
electromagneticradiation has pé#cle-like properties (asan example,
photons were shown to lieflectedby gravitationalfields), and as eesult,
it was theorizedthat all particles musalso havewavelike properties. The
idea that particlehiave wavelike propertiesesultedfrom the observation
that a monoenergetic beamadéctronscould bediffracted in thesame way
a monochromatic beam of light can diéracted. The diffraction olight is

a result of itswave charactetence, therenust be arabstract type of wave
14
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character associated with small particles. Bwoglie summarized the
universalduality of particles and waves 824 andproposedhat all matter
has an associated wave with a wavelength, thatversgalyproportional
to the momentum, p, dhe particle (verifiedexperimentally in1927 by
Davison andGermer).

h
p== (2-1)
The constant of proportionality, h, is Planck’s constant. The de Broglie
relation fuses the ideas of particle-likproperties (i.e. momentum) with
wave-like properties (i.e.wavelength). Thisduality of particle and wave
properties will be the theme throughout the rest of the text.

The de Broglie relationship not only provides for a mathematical
relationship for theduality of particles andvaves, but it alsdegins to hint
at the idea of quantization in mechanics. {featicle is in arorbit, the only
allowed radii and momenta are those where the waves associated with the
particle will interfere non-destructively as thewrap aroundeach orbit.
Momenta andadii where thewavesdestructivelyinterferewith oneanother
are notallowed, as this woulduggest ariannihilation” of thepatrticle as it
orbits throughsuccessiveevolutions.

As mentioned in the introduction to Chapter 1, for any theory tabé
it must predict classical mechanics at the limit of macroscopic particles
(called theCorrespondence Princip)e In the de Broglie relationship, the
wavelength is an indication of thiegree ofvave-like properties.Consider
an automobile that has a mass16D0. kgtravelling at aspeed 0f50.0 km
hr'. The momentum of the automobile is

o= {100k K300k ¢ hr:ﬂ:lﬂ-’m-’i—m[l-’rr I I T T LI I S
Dividing this result into Planck’'sonstanyields the de Broglievavelength.

663107 g mt oy !
A il - g™ 'I'I e A T R
P30l ke 57
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Considering thedimensions ofan automobile this wavelengthwould be
beyond the accuracy of thestmeasuring instruments. If aglectron were
travelling at aspeed of 50.&m/hr, the corresponding de Broglie wavelength
would be

Lo BEE0 Mgt 57

= - =3 77l M .
| 27l dp e 57!

This wavelength is quitesignificant compared to the averagadius of a
hydrogenground-stateorbital (1s) of approximatef0''m.  The wave-like
properties in oumacroscopic world do notlisappear, butather they
becomeinsignificant. Thewave-like properties of particleat the atomic
scale (i.e. small mass) becorgeite significant anccannot be neglected.
The magnitude oPlank’s constan.fi3 x U™ 1.5} is sosmallthat only for
very small masses the deBroglie wavelengthsignificant.

2.2 ACCOUNTING FOR WAVE CHARACTERIN
MECHANICAL SYSTEMS

The de Broglie relationship suggestsat in order to obtain a full
mechanicaldescription ofa free particle (a free particle has farces acting
on it), there must be a wavelength and hence ssimple oscillating
function associated with the particle’s description. This function can be a
sine, cosine, oequivalently, a&omplex exponentiglinctiort.

Alx) = A, ﬁll'l[

-

(2-2]

i
A Jl

In the waveequationabove,A, represents thenplitude of thewave andk
represents the de Broglie wavelength. Note that whesdbend derivative

¥ The comple exponentidunctione™ ande™* (wherek = 2wA inthis @se) areelated to
sineandcosinefunctions as Isown in thefollowing mathematical identitiegseeEquations
[-10aand1-10by):
o' = couksl + smika) e = coskx b - csmiks)
Expressing avavefunction interms of aComplex eponential can be useful Bome cases
as will beshown later in théext.
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of the equation isaken, tle same function alongith a constant, C,
results.

1

: 5! v
j?'[.ﬂ;]] _. [Zj " dysin 1:‘] Az} (23}

-

In such a situation, thieinction is called amigenfunction, and the constant
is called aneigenvalue. The eigenfunction i@ wavefunction and is
generally giverthe symboly.

What is needed now is physical connection to the mathematics
described sdar. If the negative of the squaref 2 (% =h/2x, where h is
Planck’s constant) ismultiplied through Equatior?-3, the square of the

momentum of the particle is obtained described in the de Broghelation
given inEquation2-1.

ST I 41 ’ W eI
- ﬁilz?J_.-il:_I,'l =k’ [i_"TJ A 5]n|\zTHJ =i\%) Alxl = F: Aix) [24)
Equation 2-4 demonstrates a venportant result that lies at the heart of
quantummechanics. When certairoperators (in this case taking the second
derivative with respect to positiormultiplied by -#*) areapplied to the
wavefunctionthat describes the system, abservable (in thiscase the
square of thenomentum) isobtained.

This leads to thdollowing postulates afjluantum mechanics.

Postulate 1: For every quantum mechanical system, there exists a
wavefunction that contains a full mechanical description of the system.

Postulate 2: For every experimentally observable variable such as

momentum, energy, or, position there is an associated mathematical
operator.

Postulate 2 requires that every experimentaligervablegquantity
have a mathematicalperationassociatedavith it that isapplied to the
eigenfunction of thesystem.Operators aresignified with a “*” over
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the quantity. Some of the mosbmmon operatorshat resultin
observables for a system are given in tle®wing list.

Poshiion; g=q (2-5%
Momentum: -] E]E {2-6)
3

"'Jﬂ

a’ |
Kinetic Energy: Ts- _— |

[2-71

Postulates 1 and 2 lead to Postulatéhe Schroedingerquation) in which
the Hamiltonian operatof /f - ¥+ ¥ applied the wavefunction of the
systenyields the energy, E, dhe system and theavefunction.

Hy={T+Fp=Tp -V _ By (2-E}

Podtulate 3: Thewavefunction ofhe system must be argenfunction of the
Hamiltonian operator.

Postulate 3 requires that theavefunction for thesystem to be an

eigenfunction of onespecific operator, the Hamiltonian. Solving the
Schroedinger equation is central to solving aljuantum mechanical

problems.

2.3 THE BORN INTERPRETATION

So far a model haseendeveloped to obtaithe energy of the system (an
experimentally determinable property — ian observable) bwpplying an
operator, theHamiltonian, to thewavefunction for thesystem. This
approach is analogous to how the energy of a classical standing wave i
obtained. Thesecond derivative with respect to position is taken of the
function describing the classical standing wave.
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The major differencebetween the quantunmechanical approach for
describing particles and that ofassical mechanics describirgjanding
waves is that inclassical mechanics the @pator (taking the second
derivative withrespect to position) is applied tanctionthat is physically
observable. Athis point,the wavefunctiordescribing the particle has no
observable property beyond the de Broglie wavelength.

The physical connection of thewavefunction, y, muststill be
determined. Thdasis for tle interpretation ofy comesfrom a suggestion
made by Max Born inl1926 that y corresponds to thequare root of the
probability density: the square root of the probabilityinding a particle per
unit volume. Thewavefunction, havever, may be a compldunction. As
an example for a given state n,

w, = Ae™.
The square of thiunctionwill result in a omplexvalue. Toensure that the
probability density has a real valudae probability density i®btained by
multiplying the wavefunction by theomplexconjugate of the wavefunction,
w»*. The complex onjugate isobtained by rglacing any “i” in the function
with a “i”. The complexconjugate of the functioabove is

.

w, = Ae™™.

Consider a 1-dimensional systeminere a particle is free to Hdeund
anywhere on a line ithe x-axis. Divide the line into infinitesimaégments
of length dx. The probabilitghat the particle idbetween x and x + dx is
Y *wels. It is important to note thap,*y, is not a probabilitybut rather it
is a probability density (i.e. probability per umitolume). Tofind the
probability, theproducty,*y, must be multipliedy a volume element (in
the case of a 1-dimensiorglstem, thevolume element is just dx).

Born’s interpretation ofy was madiom an analogy of Einstein’s
correlation of the number photons in a light beam relative to its intensity.
The intensity ofa lightbeam is the sum of the square of the amplitudes of
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the magnetiand electricfields. Born made an analogy that the square of
the wavefunctiorrelates to the “intensity” ofinding a particle in a unit
volume. Thisanalogy is acceptdoecause iagrees wellvith experimental
results.

The Born interpretation leads # number ofmportantimplications on
the wavefunction. The functionmust be single-valued: it would notake
physical sensethat the particle had two different prdiildgies in the same
region ofspace. The sum dlfie probabilities ofinding a particle within
each segment of spage the universey,*y, times a volume elemeltt, )
must be equal to unity. The mathematigpération of ensuring that the sum
overall space results imity is referred to as normalizing the wavefunction.

Mormalhzuron: [y st = 1 (2-9)
The normalizationcondition of thewavefunction furtherimplies that the
wavefunctioncannot becomanfinite over a finiteregion of space.
24PARTICLE-IN-A-BOX
An instructive model problem aguantummechanics is one in which a
particle of mass m isonfined to aone-dimensional box as shown in Figure

2-1. The particle is confined to the bb&cause at the walls the potential is
infinite. Thepotentialenergyinside the box igero.

F"{,J.'}:ll]: = ye L {2-10a)
ARVEL K 154 and x = £ (2« [ M)

This means thathe particlewill have only a kineticenergyterm in the
Hamiltonianoperator.

. LI B
,J]r_T=_.'F'_ _dTJ
2rl dx

The Schroedingezquation can now beritten forthe problem.
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Flgure J-1. A panicle confined to & one-dimensional box, The poteniial energy is
yera wilhin the hox, ard o is infinite & ihe walls. As a resalt, the particlke mas have
Zero probabilsty at 5 < Dand ot x = |

; R d e )
Hp=-—|"Y|-E 211
¥ Im[.-.i:.-! ) ¥ ( '

In order for thevavefunction,y, forthis system to be agsigenfunction
of the Hamiltonian,yw must be &unction such thattaking its second
derivative yields thesamefunction. Possiblefunctionsinclude sine, cosine,
or the mathematicallgquivalentcomplex exponentiafsee thefootnote on
page 16).

wix) = Asin(ix) + Frosihr) (2-12a)
pelxh = ™+ D™ (1-12h)

The constants A, B, C, arld are evaluated usinthe boundaryconditions
and the normalization condition. Theonstant k is therequency of the
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wavefunctions (frequency in theense of inversalistance) and is also
determined by thdoundaryconditions. IfEquation2-12a is used in the
Schroedingeequation, theenergy of the system abtained in terms of k.

)hl(ﬂ.l (2-11}

g-ME (2-14)

am

Hxytx) = ~[2 J—’{Ailﬂihhﬂmsqﬁa}} [

To determine theconstant k, the boundary conditions to the problem
must be appliedRecall thaty*y is therobability density of the particle.
The particle cannogxist atx =0 omx =L due to thmfinite potentials at the
walls; hence, thevavefunction must be equal zero at thespoints.

0] = Asin(0y 1 Beos(&0y =B =0 i2-15a)

The first boundargondition reducethe wavefunction t@{xh = Asitkx).
The nextooundary ondition atx =L now needs to lagplied.

will= Asnfal)=1 {213k}

There are two possibkolutions toEquation2-15b. Thefirst solution is that

A = 0; however, this would be a trivialsolution since thewavefunction
would equal tozero everywhere inside the bexgnifying thatthere is no
particle. The othesolution isthat thesine is zeroat x = L. The sine
function iszero atl, =, %, 3, or some wholenumbermultiple, n, ofx. If
the value of n igqual tozero, thewavefunctionbecomes zero everywhere in
the box, whichagain wouldsignify that there is nparticle. Asa result, the
wavefunction for theroblem becomes:

" b
WAl - .45!:1[? . {2-18}
;

wheren=1,2,3, ... and
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f=—. 2-17
T (£-17)

The wavefunction noweeds to baormalized whictwill determine the
constant A. According to Equatio®9, the square of the wavefunction
(since thewavefunction here iseal) must be integratealver all spaceavhich
isfromx =0 tox=L and set equal to unity.

; U
[w‘wf=[w"w::,{‘fﬁ:n‘ A de -1
] ] !

L . J

The normalizedwavefunction and theenergy for theparticle in a one-
dimensional box are dsllows (n=1, 2, 3, ..).

|_ .

(5} = ﬁ%sln[$| {2-13)
alwitat RTe?

E, = F—E s PIE £2-15)

For a given system, the mass of fyaticle and thalimensions of the box
are all a constant, k.

E, =kn?

Note that theenergy difference between each energy leveE
increases with increasing value of n.

_Ell)

n+l
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Yry
n=3
i
n=3
L
n=|
0 x L

Figure 2-1. The wavelunciions for the one-dimensional Parficle-in-a-Box are
shown in the fligure above for n= 1 ton = 3 quantum sates.

NAN

Figure 1-3. The probability densies in @ one-dimensional Particle-in-a-Box
sysiem is shown for the n= 1 ton = 3 states. Mote that beyond the grownd-state,
there are points with the box whise the probabdity dengily & sero,
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Note that quantization of the energy states for the particle hasredc
due to the potentianergy of thesystem. Onlythose statethat will result in
nodes in the wavefunction at the two wablsthe box are allowed. At a
node, the value of theavefunctionwill becomezero indicating that there is
a zero probability dinding theparticle athose points.

In Figure 2-2, thavavefunctions for the firsseveralquantumstates are
shown. Theprobability of theparticle ateachpoint within the box for the
first several states is shown kigure 2-3. It is interesting to contrast the
classical mechanical results with the quantamechanical results that
emergefrom these ijures. Theclassical resulpredicts arequal probability
for the particle taoccupy any poinvithin the box. Inaddition, the classical
result predicts anyenergy ispossible with theground-state energy (the
lowest possibleps beingzero. Thequantum mechanicaésult demonstrates
that theparticle in the ground-state,= 1,  his highesfprobability towards
the middle of the boxand the probability reaches aminimum as it
approaches the infiniteotential of thewalls. Inthen =2 and higher states,
note thatnodes in thewavefunction formwithin the box. The particle
probability at the nodal points of tiveavefunctionwithin the box arezero.
This meansthat theparticle has zero probability #tese points whin box
eventhough the potential energy is stdero. This is only possible if the
particle haswavelike properties.Also note that thedegree oturvature of
the wavefunction increas@sth increasing kinetienergy(increasing values
of n). The degree of curvature of the wavefunction is indicative of the
amount of kinetic energy the particle possesses.

Example 2-1
Problem: Find the probability dinding theparticle in thefirst tenth(from x
=0to x =L/10) ofthe box fon =1, 2, and 3 states.

Solution: The wavefunction given byEquation(2-18).

—

w, ()= JE sun[iF;]

Loy
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The following integral will beused:
'

Iain}{cx}.:ix - '_; |._4|:' f:ﬁin[lm;}

To find the probability in a regiorthe probabilitydensitymust beintegrated
over that region odpace.

L [L].[ln:"‘ T [1 “.[un“-
—-|—= |[sin |=---— — |sin[ —
20 Laez, L L/ 1D L Iex, 3

The probability for each level in this region of the box can be computed by
substitution of n.

-

F-:-rn—]:f",-—l_ —]:-Ln[’rlsﬁ.lﬁltlﬁd
G 2z v 5

Forn=2: P - —]- - —yin i]eﬂ'.ﬂ'ﬁ
Lid T . 7
1 Y
Forn=3 £ == -—sin| = | 20050

The classical prediction is 0.1 for this region of the box foremergy of the
particle. The quanturmechanical probabilitys much lower. The particle
tends to “avoid” thewvalls where thepotential isinfinite. Also note that as
the value of n pproachesnfinity, the classical result dd.1 is obtained.
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25HERMITIAN OPERATORS

Hermitian operators are verymportant inquantummechanics because
their eigenvalues are real. As a resuigrmitian operators are used to
representobservables since apbservationmust result ina real number.
Examples of hermitian @patorsinclude position, momentum, andinetic

and potentiakenergy. An operatois hermitian ifit satisfies thefollowing
relation:

fuidw de = [iw by dr] =ilov. ] w.ar (2-20)
for any two wavefunctioniy, ang,. Therewon the right of Equation
2-20 means take the complesnjugate of th@perator and thevavefunction
then multiply by the wavefunctiony, anthtegrate overall space. This

definition ensures that eigenvalues of hermit@erators (i.e. observables)
are real.

2.6. OPERATORSAND EXPECTATION VALUES
As defined in Section 2.5, anyhermitian operator, 0, signifies a

mathematicabperation to be done onaavefunction,y, which will yield a
constant, o, ifthevavefunction is an eigenfunction of theeogtor.

Ny = g (2-21)

Next the complexconjugate of the wavefunctions*, is multiplied to both
sides oEquation 2-21 and integrateder all space.

Ju * Gyt = [y Yoy = of yudr

If the wavefunction is normalized, then the integfg!* v is equal to one
as shown irEquation2-9. Thisleadsdirectly to the value of the constant o.

< e Iq,:.r “E}l,i-'ri:‘ (2-22)
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As mentionedpreviously, theconstant o corresponds somephysically
observablequantity such as positionmnomentum,kinetic energy, or total
energy of thesystem, and iis called theexpectation value. Since the
expression in Equatio@-22 is being integrated over apace, the value
obtained for the physically sbrvablequantity orresponds to thaverage
value of that quantity. This leads to the fourth postulate gf@iantum
mechanics.

Pogtulate 4. If the system is described by the wavefunctipn the mean
value of the observable o is equal to the expectation value of the
corresponding hermitian operator, O.

Postulate 4 lead® the generalized expression belthat can be reduced to
Equation 2-22 if thevavefunction ismormalized.

<R —— (227

Example 2-2
Problem: Determine theaverageposition, <x> for the Particle-in-a-Box
model problem for any state n.

Solution: The integralwhich must besolved, ighatgiven inEquation 2-22.

o N LA
=:1:-=‘||,|:-"xy.-'u'r*-I .ts.anl |l:m-J |

L L

L
1

J

This stateghat theaverage position of thgarticle isat the center of the box
as is predicted by classical mechanics.

The types ointegrals inEquation 2-23 are eaanteredoften in quantum
mechanics. PauDirac developedshorthand torepresent thesgypes of
integrals called “bra-ket” notation. The integral in the numerator of
Equation2-23 is represented ifbra-ket” notation as follows:
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The “bra” of thewavefunction,(y/l, represents the compleonjugate of the
wavefunction. The"ket” of the wavefunction, |u/) corresponds to the
wavefunctionwhich is operated on by tloperator,O. When th#ora” and
“ket” are put together, indicates that the product is to be integrateer all
space. Equivalently, the integral in thdenominator oEquation2-23 is
represented ifbra-ket” notation as follows:

[ =yt = {yrfue’.

The value of this integral isnity if the wavefunctions arexormalized
and y andy* correspond to treamestate. Ify andy* correspond to
different states, thevalue ofthe integral will bezero, and thevavefunctions
are said to beorthogonal Wavefunctionsthat are orthogonal and
normalized are called orthonormal

fw ||,er::| = wowadr=1 (Mn=m

[Z-}3)
=0 Mn=m

2.7 THE HEISENBERG UNCERTAINTY PRINCIPLE

An interesting point to note ithe Particle-in-a-Boxmodel problem is
that the ground-stateenergy is not zero asould be predicted by classical
mechanics. The physice#ason for this paradox has to do with uncertainties
in knowing both the position andhe momentum of the particle
simultaneously due to theavelike properties of thearticle.

There is inherent error in any typef measurement. The standard
deviation is armaverage rangef measurements in series of trials. As an
example, suppose thedollowing values were obtained for some
measurement6.3, 6.8, 6.5, 6.2, and 6.9. The averagéue is6.5. The
individual trials deviate fromthis average by-0.2,0.3, 0.0, -0.3,and 0.4.
Simply taking an average othese deviations will result in some
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cancellationssince some of thedeviations arepositive whereasothers are
negative. To avoidhese cacellations, a rootmean square (rms)
uncertainty is determined whereby the square root of the mean of the square
of each deviation is obtained-or this set ofmeasurements, thencertainty
is 0.3. Four of thdive meaurements are within the range6df+ 0.3.

The analogouspproach can be done gquantummechanical systems.
The square of the difference of thperator for armbservable0, from the
average, <0 >, is taken:{r_'? = a=} . The uncertainty squaredAO)’, is
the expectation value of this operator.

{Acr = [ 4 "{Ii:s'— _— }:r:,w,{r

This expression can @mplified by expansn. The <o> corresponds to a
constant which can factored out of the integration.  Assume the
wavefunction isr1ormalized.Then

Il.:-""l:-l'.—:'—~fr.r?*j:|?::&.l'r=[l.~"1_lf-'? Ef::l%'fl.'-=+ﬁ|‘?}:};u'r
et s -2 e e Ol s o s [ Tt
! :

1 ] 1 "
L L R S M e R L
x

The uncertaintyAO, is thequare root of the expression above.

Al =ylc o’ n-cgat {2-13)

Example 2-3
Problem: Determine thencertainty in thenomentumAp, for thground-
stateenergy of the Ré#cle-in-a-Box model problem.

Solution: According tdequation 2-25, théollowing must be solved.

ﬂp:.hlr;_ ple-<ps
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The expression above statestitine average of thequare othe momentum,
<p>>, along with the square of the averagmomentum,<p>?, must be
determined. Theverage of the square thfe momentunis determined as
follows.

e

The average dhe momentum squared is determined as follows.

< pt=]p pudry’

] . 1
-t lxE Fat x| B
= - w22 [ Jr:-:- x| = - AF =1
[ (E ]LL{ [L {f.x A

Note that the average momentum is zero as woulekpected: thearticle
must have an equaverage momentum towards eaitie of the box. The
standardoot meansquare deviation in the momentum can novetlged.

1'“|
.‘l-r_.::l ":r—-f'lf:l"' ||'iP
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The Heisenbergncertainty Principlestateghat for anysystenthere are
lower limits to the uncertainty ofa given measurableobservable. The
product of the uncertainty of two conjugate measuraliservablegsee
Section1.2) is on theorder oflzh or greater.Momentum and position along
the same coordinate areaeples of corresponding measuratibservables.

A = [2-26)

I | 3

The value ofs is quitesmall and can beonsidered negligible in the
macroscopic world. The Heisenbedncertainty Principle implies that the
smaller the uncertainty in orebservable, the greater the uncertainty in the
other corresponding observable.

The Heisenbegr UncertaintyPrinciple can now be readippplied to the
ground-state of the Particle-in-a-Box. Tihecertainty in thenomentum of
the particle has beeareviously determined iBxample 2-3. The uncertainty
in the positionAx, for the ground-state is determined in a similar way as the
momentum in Example 2-3.

For the ground-state of a Particle-in-a-Box:

A

.‘Iul;l = E

-

J- |:¥|- = OIS0,

. S ST
."'..I.'=".'I~'-C.'l." I ﬂ i

L P

T
Apav | # (0, L4UL) = C.O00N - 0.5658 =
A

ya| =

As can be seen, the Heisenbdrgertainty Principle i®beyed for the
Particle-in-a-Box. As the boxs made smaller (L is made increasingly
smaller), theuncertainty in the pdson decreasewhereas theincertainty in
the momentumincreases. At the limitthat L approaches zero, the
uncertainty in the position becomesro (the position of thparticle would
be confined to @oint); however, the uncertainty in the momentum (and the
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energy) would become undefined indicating tha there would be no
knowledge of theparticle’s momentum. Arunderstanding of why the
ground-state energy fothe Particle-in-a-Box isnon-zero can now be
rationalized. If the kinetieenergy, and as eesult the momentum, of the
particle werezero, theposition of theparticle would also be precisédpown
because it is not in motion. Thisould be indirect violation of the
Heisenberg Uncertainty Principle.

Point of Further Undersianding |
Consider a particle m a 1-dimensional box. What would happen to the
guantization of the particle at the limit where L approaches mfinity? The
ground-state encrgy 15 equal to zero at this hmit,  Explam why this does not
violate the Heisenberg Uncertainty Principle based upon the uncertainties m
position and momentum.

2.8 PARTICLE IN A THREE-DIMENSIONAL BOX AND
DEGENERACY

Particles normally are capable of travellingtiinee-dimensions, and the
particle in a one-dimensional box che readily expanded into three. The
length of the box ireach directiorwill be taken ad.,, L,, antl, inthe x, Yy,
and z coordinates respectively. The potential within the be&rs and it is
infinite at thewalls: O,L,, L,, and.,. The Hamiltonian fothe particle will
correspond tokinetic energy in the X, y, and z coordinates. The
Schroedinger equation for tparticle is as follows:

Hixpelwisy.zh= Epia, y,z)

or

I 7 2 ag ™
_;ﬂ [:_ | % oz ey - Besay
X B ]
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The motion of the particle is independent in each dimension making this
problemseparable. Becausbe problem is separable, thimiltonian can
be written as a sum die Hamiltonians for each dimension.

I'}{I.}'-E}'=f?[.t]+f?l:_1-]+f‘.‘|:::| (2-21)

In order to sasfy the Schroedingerequation (Equation 2-27),
wavefunctionyix,».z¥ must be theproduct of wavefunctions ineach
coordinate.

i) = pldele (¥eis) {2294}

In all separablsystems, the Hamiltonian is represented as a sum along each
independent variable, and thevefunction for thesystemwill be aproduct
of the wavefunctions fagachindependent variable.

The system in each dimensias identical to a Particle-in-a-one-
dimensional-Box. As &esult,Equation 2-29a is a productwévefunctions
for the one-dimension#article-in-a-Box.

] r1 .rn [z Y
'.!-"l.t.}',zi—t |-—sm " ﬂ J[ [—ﬂn Iiﬁ"[ﬂ:rE || (2-2%9k}
- R

The energy eigenvalues ameund by applying Equation 2-29b to the
Hamiltonian inEquation 2-27. The energy eigenvalues wdpend orthree
differentquantum numbersi,, n,, and corresponding t@achcoordinate.

i L d
o e by {231
LA EH'I L - _|'_'!

wherein. =1, 2,3, .. 3,=1,23 .;o.= 1,53 .

Degeneracy occurs when there is mdran one possiblstatewith the
same energy. Consider a fgde in a three-dimensional bowhere the
lengths in the x and girection areequal: L, = L, # L,.  Under these
circumstances, it ipossible to have, motban onestatei.. o,. h.1 with the
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same energy. As axample, the state 1, 3, 2 whlave the same energy as
3, 1, 2. Degeneracig an important concept as it occaféen in chemical
systems.

Chemical Connection

The particle in a three-dimensional box can be used to model the
ranslational energy of a gas phase atom or molecule. Consider a gas phase
argon atom ina 1,00 m square box at 30, K, The average thermal encrgy
<E> of the argon atom 15 found by multiplying the temperature by
Boltzmann’s constant, k.

e B = kT =138x10"2 0 K" N00.4) =4, 14x107 F

An argon atom has only three degrees of freedom; translational motion in the
x, v, and z coordmates.  If the translational energy of the argon atom 1z 4.14
x 1071, what is a possible translational quantum siate for the atom? How
much energy 15 required to promote the atom one quantum level i each
dimension? The energy differences between each iranslational quantum
level 15 50 small at these lewels {le. a comtinuum) that m  statstcal

thermodynamics it 15 approximated as infinitesimal.

PROBLEMS AND EXERCISES

2.1)  Calculate the d@roglie wavelength for asupersonic jetircraft with
mass of2.62z10' kg travelling at Z.55xl#¢ km'hr. Is this
wavelength significant relative to the size of a typical fighter
aircraft? Nowcalculate the de Broglie wavelength for electron
(massequal to¥.11%10" kg) with 13.7 eV ofkinetic energy. (The
electron volt, eV, is a conveniennit for describing the energy of
smallparticlesuch as aelectron:1 eV = 1.6x10"° J.)
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2.2)

2.3)

2.4)

2.5)

2.6)

2.7)

2.8)

2.9)

2.10)

Chapter 2

For a Particle ina 1-dimensional Box,determine whether the
following operators arélermitian: a) position; bijnomentum; and c)
kinetic energy.

Demonstratethat the eigenfunctions fo the Particle in a 1-
dimensional Boxare orthonormal.

For the particle in al-dimensionalParticle-in-a-Box, determine the
probability of the particle in theenterl/10" of the box for the= 1
and n = 2 states. Justify your resultsbased on the shapes of the
wavefunctions in thisegion as showin Figure2-2. Howdoesthis
compare to whatvould be predicted classically?

For the Particle in a 1-dimensional Box, what is the probability that
the particle is at=1./2 inthe=1 ame2 states?

Determine the energgigenvalues and eigenfunctions fopatrticle

free to travefrom x = -0 t0 x = 0. What occurs tothe quantization
of the particle’senergy? What might youinfer about the curvature
of the eigenfunctions?

Calculate explicitly the momentum expectatioalue for the 1-
dimensionalParticle-in-a-Box for th@a=2 state.

Calculate theuncertainty in the momenturand position for a 1-
dimensional Particle-in-a-Box for the=10 andn =100 states. Is
the product of the uncertaintiewithin Heisenberg Uncertainty
Principle limits?

Determine the uncertainty in the momentum and posftiwreach
dimension for a 3-dimensionBlarticle-in-a-Box in the ground-state.
Why is it not possible for the energy to be zero in any one dimension
even if it is not in the other dimensions?

Consider aparticle in a 3-dimensionabox with the following
dimensions:L, = 2L, = 2L,. Doesthis systemhave anydegenerate
states?Justifyyour answer.
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Rotational Motion

Rotational motion is aimportant topic in chemicaystems as it will be
used, in thehapters tdollow, to describe theotationalmotion of gas phase
molecules andelectronic motion in atoms andmolecules. Themodel
problemspresented irthis chapterwill be the basis for modelingotational
motion throughout theemainder of théext.

3.1 PARTICLE-ON-A-RING

Consider garticle ofmass ntonfined to aircle with aconstantadius r
as shown in Figure 3.1.The potentialenergy anywheren the circle is
defined aszero. TheHamiltonian, A, for theparticle in Cartesian
coordinates igjivenbelow.

- b

G- HE € J

M

- {3-1}
ae &

"

The motion of the particle is not separable betweerxthad y-axes. The
problem can bemade separable bytransforming thecoordinatesfrom
Cartesian to polacoordinates. In polar coordinates, the varialtesome
the radius ogyration, r, and the angl¢, ofthe partiiem theorigin.

X=rcosg y=rsing

37
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'_m

/ I\'
1
I >
Fippre 3-1. A paricle confined o travel on a ring with & consant radias r

The secondderivatives with respect to x and y in Equation 3-1 are
transformednto polar coordinates using the chain rule.

N S L. I

2 At owmt ord P B
The Hamiltonian irEquation 3-1 can noWwe written interms of r ana.

Fle 1 E 1 8

—_—

| ﬂ.:'rl . {'h,. _I'! I'_:.|I;|!| )

|I-_."Il:."'l':'j}=

2

Since the radius r isonstant in this problem, afif the terms that
involve derivatives witlrespect to r willbe zero, reducing thidamiltonian
to just onevariable,¢.

1 g%y n g .
H ___[__ - 3.3
) dd” ) 2 dg! -2

The moment of inertia, I, of the particle,dgual to itsmass times the square
of the radius ofjyration r. The Hamiltoniam Equation 3-2 isvery similar
to the Hamiltonian foithe one-dimensiondParticle-in-a-Box problengsee
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Section 2.4). This willresult in the same functional forms for the
wavefunctions irterms of the variableé.  Th®llowing wavefunctionwill
be used:

wigh- A 0 fre* (33
The constants A and B am®rmalization constants, arnlde constank will

be determined bthe boundary onditions for the particle. Th8chroedinger
equation and thenergyeigenvalue becomes:

Y B odt -
jf{lﬂ]ﬂl‘{lﬁ'}_—igldf + B ]||=E||I-"|.':I".|'
kiRE .
b—‘?. |.3"4:|

The boundaryconditions must now be applied to thgstem. There are
no points alonghe circular path where thg@otential becomes infinite as in
the case of th@article-in-a-Box;hence, the wavefunctiodoes noneed to
truncate at any points. Theavefunctionhowever, must beontinuous and
single valued at given point (seeSection 2.3).This rajuiresthat thevalue
of the wavefunctiomust be thesame ay =0 anddn.

W) = el 270
.-‘{E*I: + EI‘.‘,-IL':\: = AE.EH‘?.I.'.": _ EE-&'IE-H..'-:'
A1 F= et g B {3-%)
The equality in Equatiol3-5 is satisfiedbnly if k is an integer(sincethen
e™" ande™* individually are equal to 1)The symbol fork is traditionally
m, known as the magnetic quantumamberwhen referring to electronic

states. The possible values fay  are as follows:

r, = 0,211,023,
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The allowedenergy values become:

F- mr::‘]’

ar

where my =02 L2 %3, (3]

The final task is to normalize thgavefunction. Since the value o,
can be both positivand negative integerthe wavefunction cabe reduced
to just oneexponential term.

pidh = Je

The limits of integration fomormalization will befrom 0 to 2x since this
covers the entireircular path.

[ *uair =47 | e * [e™* bty = 1
n

—
o - ul"l
i

The normalizedvavefunction for the Particle-on-a-Ring becomes:

erl) = ,JLE'“"; my = [4+1,eF, {3-7)

-

A physical connection needs to bmade of thesign on them, quantum
states. Positive and negative signs indightection, and in this case, the
direction must be thedirection of rotation: clockwise or counterclockwise.
To confirm this, the angular momentum, L, of the particle can be
determined. Since the rotation isonfined to the x-y plane, thenly non-
zero component of the angular momentum of the particle is along the z-axis,
L..

L,=xp,~yp,
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The angularmomentum operator along the z-axis polar coordinates is
given as:
Al o
L=t | 41 {3 £}
g
The angularmomentum expectatiovalue, <L, >, is determined as
follows:

o by e |, et @]
Tl B e - 09
5[[1hﬂ JEAp j]d¢ b

Based on théeft-handrule, positive angular momentuior positive values
of m, ) indicates a clockwise rotatiomhereas negative valuesdicate a
counterclockwise rotation.

It is interesting to note that in theystem, theyround-stateenergy(m,=
0) is zero unlike inthe Particle-in-a-Boxsystem. There are no points along
the circular path that require teavefunction to become zerbgence, it is
possible for thavavefunction tdhave no curvature. Adiscussed previously
in the Particle-in-a-Boxsystem(see Section 2.4)the degree afurvature in a
wavefunction isrelated to the amount of kinetenergythat the particle
possesses. Sindae ground-statevavefunction is econstant, there is no
curvature to thewavefunction and thearticle has no kinetic energy or
correspondinglyangularmomentum. The probability density of the particle
in the ground-state is treamethroughout theentire circular path since the
wavefunction is a staling wave otonstaniamplitude. Theeal portion of
the wavefunctions for thes, states of +1 and +2 ashown in FigureS-2a
and 3-2b. Them, states of -1 and —2 are same as shown Figure 3-2 excer
the waves are now inverted. Ihese higher states, curvature in the
wavefunctioneemergesndicating anon-zerdkinetic energy. Theanti-nodes
of the wavefunction liel@mve andelow the ring.
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(&) my = +1

(b my = 42 'ﬁ

Figure 3=2. The real part of the firen amd second excied sise wavefunctions
fior a pariicle eanfined to & ring of conseant radios are showr

3.2 PARTICLE-ON-A-SPHERE

This model problemwill be used todescribe theotational motion of
molecules and thelectron motion iratoms. Consider gparticle ofmass m
free torotate on thesurface of aspherewith a constantadius r. The
potential on the sphere is zeleence, the Hamiltoniawill have only the
kinetic energy operator for each coordinate.

) 7oAt 1 N :
H[.:,;-.:}:-F'— ﬂ, LR P =7
2ml Gt E:EJ, i

The second derivativeover each coordinatés called the del-squared
operator: V?.  The motion ahe particle is notseparable inCartesian
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coordinates. Acoordinatetransformation tosphericalcoordinates (rf, ¢ )
assureseparability.

x = rsinfrosgd y=rEinfsing z=rooeld (3-1113

The del-squared operator must now be converted to spherical
coordinates.

LFa 1
LT L — A in
|J.r r+r_ (311

The A? contains the operations with the angwariables® andd and is
called thelegendrian.

"y ;o= ; '-\.
L[ 'lL sin & i} (312
gin” &1 Jg° T g 1!? LG8

Al =

The Hamiltonian for @article-on-a-Sphere carow be written in terms
of sphericalcoordinates.

_ 0 B R
Hr.8.¢)=-- [l L r+LG-‘] (3-13)

Since r is constant ithis system, thesecondderivativewith respect to r is
zero reducing the Hamiltonian jiest thelegendrian part of7?.

C S
] ER —At=-— A°
l: ﬂf'} ..r.'|.r 1y 1l
h ] [ 3t 1§ an 0 Bt
=-— - - — I.“_ BN —
2 am® Bl p’ ; sinfh O | -ELE?J

The Schroedinger equation for the Particle-on-a-Sphere becomes:
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-'"FI a
-| = |$view = Evie.
I

_?J:

" ¢ ot ¢ ‘v
- a[e.,s. |"'"{ =m':iL£J ‘”] {3-15)

= Egilf, )

Since Equatior8-15 is a sum oflerivatives with resped¢b 8 and¢, it is
separable. As aesult, the wavefunctiony(8,¢) will be a product of
wavefunctionsinnerms ob and as previously discusseaa Section2.7.

v18.6) = DlgIols)

The first part of theSchroedingerequation in Equatior8-15 involves
taking thesecondderivative of thevavefunctiorwith respect tagp. This is
identical to the operation aseen preiously for the Particle-on-a-Ring;
hence, thevavefunction®(¢) will be thesame as ithe Particle-on-a-Ring.

r£)®ﬁ'¢' = ENE 114
kﬁ'ﬁ"‘z, LT BN E R 4 1

Substitution of Equatior8-16 into Equation 3-15 results in the following
differentialequation:

w [l - *1 | ‘ 1
. QP + ——| -2 [5inE —om |
H[ S i)+ H[ EJ“" I|{J wJ

= Eeygig),

(3-17)

The solution to this dierential equation iswell known. The
wavefunctions®(8) that satisfgquation3-17 are theassociated Legendre
polynomials. The associatégegendre ponnomiaIsP,'”"'(z), for a variable
z are obtained from thellowing recursion relationship:
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m T r.l'
F‘rl 'I[z]l=l_|—z“_l- ]Fﬁc{z}.

The variable for thdunction ® is actually cosf; hence, thessociated
Legendrepolynomials are generated in terms of z, and then z is replaced by

cos 8 throughout. The normalization constasitobtainedby integrating
frome =0 ton.

21 < 1t = 1
ETLT

The normalized associatddegendrepolynomials, ®(8) aregiven in the
following expression, and the firseveral are listed in Tab1.

{21 + 1K7 - Jr, [t

) =
Vo2 lmy

il iaasay {3-1%)

The product of thenormalized associatebdegendrepolynomials along
with the Particle-on-a-Rindunctions are known as ttspherical harmonics
symbolized a¢,, .

¥, =O@IBE-TI I (3:19)
The arbitraryphasefactor

(_ 1)[m, +]m,|]/2

is introduced tcconform to ommonconventions and its value is +1 or —1.
Table 3-1 lists thdirst few sphericalharmonicwavefunctions. When the
legendrian, A>, is applied to apherical hamonic wavefunction, the
following eigenvalue results:
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AV, =-Hi+1iF,, {320

The values of | and m, are integers such thdt=0,,2,3,. and

m;=1,1-1,.,~l. Though the determination of the particlestterequires
specification of bothl and m,, the energgigenvalue fothe Particle-on-a-
Sphere is dependent only on theuantum number.

il
r

f
E=ﬁ!t-'+l".l. where 4 =0 1,213, .. (321}

For eachl quantumlevel, there ar@! + 1 values ofm, resulting ig2/ + 1
degenerate states.

Tahle 2.1, The normalized ssociated Legendre polynomials, &, (6) and spherical

hurmonie wavelunsizng, FJ.-. (8] upial =3

i | m 8, (&) ¥, {H1¢'}

0| 0 41 T

L] o J3cose L2 easo

1 | &l Lsing 11, [Llsing)e"
2 | o 9 (305" 0 - 1) L [2(3c0s* 8 -1)
2 |} =1 ’ﬁ{n:ust? sind?) ¥ J‘J;_,{'-%ﬂ sin & je**
2| 2 "Tlim“. -E-'I] - J-Hll_l::m"'-ﬂ}f—z'*

3|0 ..."%_{1—551'1': B feos {-‘E 2 - 5sin’ 6)oost

3| £1 ,,‘E [ﬁcu&*-ﬂ - ]]E.Erl i?] i ;—E_:_[Ef'mﬁlﬂ & t:lﬂﬂﬂl‘i'“
3| £2 A s sin’ @ &J%l:ms-ﬁ'sm’ )

LR @ sin® & ¥ ,lrulglrsmj E'}z”"




Rotational Motion 47

Example 3-1
Problem: (a) Confirm thafy,., is arigenfunction ofthe Particle-on-a-
SphereHamiltonian, and (b) that is normalized.

Solution: (a) TheY,., wavefunction is foundTiable 3-1.

F|-1 = l[}% |?|:E-I11 []:L' o WesmE e
L& g

i

N corresponds to thaormalizationconstant. TheSchroedingerequation
becomes:

:
- Fll_f f]",_, -

Bl & ] i 1 &) [ 2 i
- — [Mran e | _J g —l."-’ {1 e
E!|: [&j'f e +5|n|5i"kﬁﬂ A el fon _

- LY

L Bt Ty PO S feasel * 1= &
- _E,".-{mnti}e' - |—[:51n5'}.'u{-2n5|5"]? = ET.,

5 sindd G |

d

_%’r—ﬁ{ﬁln"‘ﬁ}..‘a.‘ 1 I:mza""'"zﬁ'}”e'"]=51’._.

sinft

-

B gt ] NI —
- 37~ e '@ +m{]—ism’ﬁl}m- * _EY,

- g—;{— J"u'{sin fi':]? @y ."'-'{Eln ! EJIL'"" — 28 Hk"'_l: EX .

hZ
'TYH =EY,
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The energy calculated is theame result that isobtained directly from
Equatior3-21.

1
Ll

Bt A B
E= E!{eﬂj =§1|:|+]} =T
(b) If ¥,_, is normalized; théollowing integral must bequal to one:
I:I.F.-I |H-I ::' = .Ilf|...| }':|.|l1r!' =1.

The infinitesimal volumeelement dt must be converted tospherical
coordinates.

g1 - dxadydz - ! drsin iy

Since r is constaribr the Particle-on-a-Spherés will be interms oB and
¢ only.

1 = sinAfoid

The integral becomes:

]'}’|'_|1"|_1df =%[;"’:T£r 11{ﬂn5‘}&"" H{Smﬁ']f * ][imﬂ.l"ﬂi’#]

o2 o

This confirms that the¥,_, wavefunction isormalized.
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The angulamomentum for the particle can now teetermined. When
the particle isconfined to rotate ironly two-dimensions (i.econfined to
rotate on aing), the angular momentum pgrallel to thez-axis and is fully
determined by the value e#,. In three-dimensionatotation,the angular
momentum need not be paralielthe z-axis and maglsohave components
in the x and y-axes. The operatde the components of the angular
momentum L inCartesian coordinates arefaows:

The component angulamomentum operators cabe transformed to
sphericalcoordinates byising the chain-rule.

. r ) . -
i =il —gin g2 - Sued i] 123
! ‘ I__ sing EH anfd op ( )
- A
L = -.ﬁ[mm; E”i'i] {123
T A wng Ay
L = :'Izi [3-24}

o

The square of the angular momenturh, cafobedfrom the angular
momentumcomponent operators. The square of the angular momentum is a
scalar quantity as iepresents the dptoduct of L - L .
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By combining with Equations3-22, 3-23, and 3-24, the total angular
momentum squared operator is obtained, and, to no surprise, it is
proportional to the legendrian.

it - rﬁii;r__l:ﬂf; |;“11ﬂ:%sinﬁ-';ﬂj'= BAT 126y
When the legendrian actsn the sphericaharmonic wavefunctions, the
result is agiven inEquation3-20.

B¥, = EBaATY =Rl 1) (3263
The magnitude of the angular momentum Wwél the square root of Equation
3-26.

e egde 3f The prgdar tenmenirt = ﬁ,ﬁu'.’l;f - {1-27]

As can be seen liyquation 3-27, thangular momentum is quantized.

The spherical harmoniwavefunctions @ eigenfunctionnly of the z
angular momentunoperator and the overall angulartomentumsquared
operator.

L Y. =coaslant ko I Fy, =consiant” F_

The sphericalharmonics are noeigenfunctions of the x and g ngular
momentum operators. This means that only theverall manitude of
angular momentuntan be determinedlong with the magnitude in the z-
coordinate. The magnitude in the z-coordinateei®rmined by applying the
z angular momentum operator to #ghericaharmonicwavefunctions.

L ¥, —mhl, {3 28)

As an example, for=2, the possible valuesnmpfare -2, -1, 0, 1, and 2.
The magnitude of thangular momentum i%/6 and the z-component is
one of the possibldéive values:-2a, -h, 0,2, an@h. Notice that in every
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case the z-component of the angular momerituaiwaysless tharthe total
angularmomentum of the particle. This meathst theangular momentum
vector cannot lie parallel to the z-axis. Only for laxgdues ofl, such as
for macroscopic objects (i.e.ball), is the value offii+1) close tol such
that the particle can be said to rotatdely about the z-axis.

Example 3-2
Problem: Consider théollowing two differentmassesindergoing rotational
motion:

a) an electrofmass %.1 1210 " kg)

b) a macroscopic particlenass = .02 kg]
In both cases, the masses are rotating. 3 revolutions peisecond with a
radius ofgyration of 1.0 cm. Determine thé quantum number and the
smallest angl® that thengular momentum vectonakesfrom the z-axis
for eachparticle.

Solution: From classical mechanics, themagnitude of the angular
momentum, L, iqual to theangular speedp, iradians pesecondimes
the moment of inertia, 1. This can be related to go@ntummechanical
expressiorgiven in Equation 3-27.

L= fw - kil + 1)

The smallest anglé that the angular momentum vector makes to the z-axis
corresponds to the statlat thez-component of the angular momentum is
maximized. This occurswhen m, =/. Theangle 6 isdetermined by
recognizingthat cosine® is equal to the magnitude of th-component of

the angular momentum divided by tmagnitude of ta angulamomentum.

I
cosh = —=

LT gD

e, b m,

The minimumangle,Bmi, 0ccursvhenm, =/ as mentiongareviously.
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{

.,Il.lif+1|'.

a) Forthe mass ah electron, the value btan bedetermined afollows:

cpsf, =

f=med = (000" kg0 m)* =% 102107 kg - m?

Ju (901010 kg m? 195055 2 rev')
! 106310 kg w5

TRV T

ot 108)Y =0
1=10

The value 016, is determined adollows:
cosf_ = 2195 6 ~18°
05

b) For the case of the macroscoparticlefmass = 0.0 kik.

I =mr® = (00208 )0 00007 m)7 = 202007 ke - 5

e gl el . -1 i
1y =Lu=|{1.lllxlﬂ agr - 1 ILﬂirev ‘.'.E IIEF Fow }= T A x]07
A 110 " ke-m- -

=2 3100" = &M

_ dgka0"
T A sn"
As can be seen itihis example, theotation ofparticles can bessentially
confined to glane only when the value bfis large suclas in macroscopic
particles.
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PROBLEMS AND EXERCISES

3.1)

3.2)

3.3)

3.4)

3.5)

3.6)

Consider theotation of the H atom in a Hinolecule confined to
rotate in a plane (a restrictidghat will be removed in a subsequent
problem). Since the latom is samnuchmore massive than the H atom,
it can be vieweds stationary. Theadius ofgyrationwill be taken as
the bond length (approximately 160 pm). What wavelength of
radiation is needed to undergdransition fronthe ground-statéo the
first excitedstate if a) théwydrogen atom iSH and B}?

Confirm that the wavefunctions for theParticle-on-a-Ring are
orthogonal.

Calculate a) then, energylevel and b) the angular momentum for a
wheel with a mass of 15.0 kg and radius 0f38.1 cmrotating in a
plane at 45.0 rpm.

Confirm thatY,, andY,; agiven in Table 3-1 are @&igenfunctions of

the Particle-on-a-Sphere modgroblem; b) normalized; and c)
orthogonal.

Repeat the calculation Problem 3.1y allowing the Hatom to rotate
freely in 3-dimensions. What wavelengthof radiation is needed to
undergo a transition from thground-state to the firgixcitedstate for
each type of Hatom? What angle® will the angulamomentum
vector make from the-axis when the H atom is in thé,,  excited
state?

Confirm that theY, is not an eigenfunction of the x or y angular
momentum operators but is areigenfunction of the z angular
momentum and overall angulamomentum squared operators.
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Techniques of Approximation

There are very few problems fathich the Schroedingeequation can be
solved forexactly, so methods @fpproximation are needed order to
tackle these problems. The two basic methods of approximation are
variation andperturbation theories. In variatiotheory, aninitial educated
guess is made as to the shape ofwagefunction, whichs thenoptimized
to approximate therue wavefunction forthe problem. Inperturbation
theory, the Schroedingesquation isseparated into parts in which the
solution isknown (from previously solvedoroblems omodel problems) and
parts thatrepresent changesr “perturbations”from the known poblem.
The wavefunctions from the part of tehroedinger ation in which the
solution is known are used as a starting point and themodified to
approximate thérue wavefunction for th&chroedingeequation ofnterest.
Both theories arémportant andoowerful problem solving techniques that
will be usedthroughout the rest tifie text.

41VARIATION THEORY

The first step is to write the Hamiltonian for ti@oblem. Then an
educatedguess is madat a reasonablevavefunction called formally the
trial wavefunction,ywa.  The trial wavefunction wihave one or more
adjustableparametersp;, that will be used for optimization. Arenergy
expectation value in terms of theljastable parametersg, is obtained by
using thesameform as inEquation 2-23.

54



Techniques of Approximation 55

Al %, (1)

L Ty
The term in the denominator of Equation 4-1 nisededsince thetrial
wavefunction is most likely natormalized.

Variation theory states that tlemergyexpectation value is greater than
or equal to the true ground-stageergy,E,, of thesystem. Theequality
occurs only when the trialwavefunction is thetrue gound-state
wavefunction of thesystem.

T L bor any o) (41}

Sincee is afunction of the yetundetermined adjustablparameterg;, the
value ofe can be optimized by taking the derivativeeof  with respesdb
adjustableparameter andetting it equal to zero. Malue foreach parameter
is then obtained for the optimizedezgy of the ground-state.

e

— =1 4.3

Variationtheory can be proven asltbws. Takethe trial wavefunction,

Wi, @S @ linear combination of theue eigenfunctionsf the Hamiltonian,
A.

Il':lllv'u'n:ll = El’!ﬂlp'.

Sincey, is areigenfunction of thaHamiltonian of thesystem, applyingd
to y, will result inan energyeigenvalueg,,.

~

Hy,=E.y,

Now consider théollowing integral:

Wt = E Wit = ¥ Eoe, JwolH - £, 0w .t



56 Chapter4

= EE_{::"'..: {El - E‘-"":I.Fw-:liplﬂnl]-

Since thewy, eigenfunctions areorthonormal (see Equation 2-24), the
previousintegral iszerowhenn #n' and one when=n'".

T e E - By dr=Fec, E, - £ )20
nr r

The resuliabovemust bepositivesince

L,z B ond e, —|-::,, :

are positive.Therefore:
IF-'-m-{f;’ - Ea,lb’mdf =i oy dr-E, =¢-E, =0
or
e2E,

completing the proof.

Variation theory stateshat the energy calculated from any trial
wavefunction will never bdessthan the true ground-statnergy of the
system. Thigneans that themaller thevalue ofe, thecloser it is to thérue
ground-stateenergy of the system aritie moreyy, represents theue
ground-statevavefunction. Therial wavefunction is set up with one or
moreadjustablgarametersp;, makinte functionflexible to minimize the
value ofe. An n number of adjustalparameters will set up annumber of
differentialequations:

& Ele £y

Increasing the numberf adjustablgparameterimproves theesult,however
it also increases theomplexity of the problem.The variationalpproach is
demonstrated in théllowing example.
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Example4-1
Problem: A particle with anass m ionfined to a Bimensionabox. Use
the following trialwavefunction:

¢ P PR
pf,.,;,,=.l"-"<]| .1'—J= I+p[1—%]]

.

where N is the normalization constant and p is ddgistableparameter.
Note that this function is welbehaved at # boundary conditionsince the
function iszero ak =0 anct=L.

Solution: The firststep is towrite the Hamiltonian for the problerfsee
Section 2.4).

L oat

m dz’

The next step is to solve far irerms of theadjustableparameter p
(Equation4-1).
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am i 5 15 j,ﬁ-? - 5 15

£= = - =
Ll PO S S P J
T AT ‘ Y

Now the derivative oE with respect to p is taken and s#ual to zero to

solve for p.

%—D Ap't} ¢ ldpl e 2]

The solutions arepL = 1.1331 and -4.6331. Thesevalues are now

substituted into the ergssion fok.

v ) £
5””| Al for pL=1.1331

5= ﬂ'ﬂ'ﬁﬁ'ﬁ'gl = |
mi’ || 7 999TmiT

:nmztm[ — | : for pL =-4.6331
2t U"'-'jlmL‘

SincepL = 1.1331 results in a lower value for the energy of the ground-state
this value is adopted. This optimizes tiial wavefunction to:

o | & +1.|.~51|' I
IJ‘"..-,ﬂ — "t I[-J L T L : .

The energy obtainedsing this trialfunction can now be&ompared to the
true ground-stateenergy fora Particle-in-a-Boxgiven in Equation2-19.

LS B
True Ground-state Energy: E. = T _'].]
Er:.!.'L xﬂrm‘, J
-

Ground-state Egrgyfrom Trial Wavefunction: £ |
L 70097t
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The optimizedrial wavefunction can now beormalized(seeSection 2.3).

I -
Lwlri:ll'wb al dx - 1

-3
i : $ad
;'-."2.[ x—f—\li-]'lﬂl[x—x—' de=1
YA

A
N-d .-m.m,lll
L]

| Point of Further Understanding
| The trial wavefunction in Example 4-1 (though quite good already) can be
improved by adding an addibonal adiustable parameter

. [ .'._: i | Y
W ot = NP -'_T +H -'-_T: i

List the cguations that must be solved in arder to optimaze. this
waveiunction, For onc additional adjusiable paramecter owver the irial
function wsed in Example 4-1, how many additional egquations must be
solved? Wrnite the equations that must be solved 1o optimize this frial
wave [UneThon.

A useful approach to obtaining a triatavefunction is tdform it from a
linear combination diunctionsy; suchhat the combinatioooefficients,c;,
become the adjustabf@arameters.
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E.Hrni-\.' = EE.Wi E-'I_q:]

The functionsw, y4, . ... are notvaried in the calculation and constitute
what iscalled thebasis set.The value ot is computed as follows:

iy JZ )T e
(W e Wi I(LZ E.’#-W (z‘v 1'|dr

sk

EE{',-':J:]E,'I:Edef rYreeH;
[ 1]

£= ] . = 4 I:d-s:l
}__,Ea:',cr‘[l;ﬁrl wodr nioc,l,
1 _|' 1 __'

wherel | = {urr- |f?|'|f‘,-:| and 5, ={y, h’".-}

To find theminimum value of, Equation 4-5 is differentiatedith respect
to eachcoefficient and irturn set

O¢
oc,

in eachcase.

42TIME INDEPENDENT NON-DEGENERATE
PERTURBATION THEORY

The ideabehind perturbation theory ithat the system ohterest is
“perturbed” or changed slightly from a system whereby thalution is
known. This can occur in twalifferent ways: a) a new problerthat has
similarities toanother system of which the solutionkisown (this happens
often in chemistry) or b) thenolecule oratom experiencesome type of
external perturbation such asnaagnetic field or electromagnetic radiation
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(this is important in the case spectroscopy). At this point the discussion
will be limited to time-independensystemswith non-degeneratguantum
states. A time-independent perturbation is onghich the perturbation is
not a function ofime.

The Hamiltonian for the systewf interest is divided into parts: the part
representingsystemwith a known solution, andhen into a number of
additional parts thatorrespond tgerturbationsrom the known system to
the system of interest.

F." — h‘;ﬂn + H-nl: + H‘rm -

The term inthe equationabovewith a superscripzero corresponds to the
Hamiltonian for thesystemwith a known solution (unperturbesystem),
H® . The rest of the terms correspondaidditionalterms thaperturb the
known system. Theerm B is dirst-order perturbation, the terld® s
a second-ordeperturbation, and so on. Thdea isthat each order of
perturbation is &light change from the previoosder.

Example 4-2
Problem: Consider a Particle-in-a-Baith a sinusoidal potentiahside:
' k|

Fizl=« !:m.l\:.iTﬂ:I L

The terme is a constant. Write tldeferent orders of the Hamiltonian for
the particle.

Solution: The complete Hamiltonian fg'st written for the particle.

o r a2
H=T+F= -H—[-G E | I Esin[sﬂ
ml Ay J L

1
-

This Hamiltonian can be broken down into two pattsat of theParticle-in-
a-Box Haniltonian, H®, and that ahefirst-orderperturbation,7® .



62 Chapter4

I z i b
g B Fio =¢r:-in|\-3F

- -
LRl O .

The solution for the perturbedystem camow be developed. The
variableX is introduced as a scatprantity that actas a “tunabledial” for
the perturbation in the range 0k A <1. Whens equal to zero, there is
no perturbation resulting in the unperturtsgdtem. When thealue ofi is
unity, the system experiences thellfyperturbation. At theend of the
derivation, thevalue ofA will be set at unity meoving it from all of the
expressions and theerturbation will be entirelyeflected in thefirst and
higher order perturbing Hamiltonians. Eh Hamiltonian for the perturbed
system can be written as erpansiorseries in terms of.

H=A"A"™ s U H " B/ (-4

The wavefunction for theystem of interest at @uantumlevel n, y,, can
also be written as a surof correction termsfrom the unperturbed
wavefunctionsy!?, in aexpansiorseries of.

2 AR

w, -t wl® . .-;.Il,i"il: I.F,: .EI:' e I:Ii--'-ll:l

Likewise, theenergy for theperturbedsystem for ayuantumlevel n can also
be written as a sum aforrective termsn energyfrom the unperturbed
system, E{”, in amxpansiorseries ofA.

E = PEM AN+ E (d-8)

Equations 4-6 through 4-8 camw be applied to theSchroedinger
equation foithe problem.

Hy,=Ew,

- £, b, =
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[{4° 10 - aF 4 AT T ----}—(A“F"" + AED CGEENY L) a9
(A0 My Gl =)

In Equation 4-9,» is thevariable and the equation can be expanded and

grouped in terms of orders bf

.-:!.{lthhr':f:llll-l' lEI"l |i|!ll_._|1:|-]
A - E:”‘ Ity (4-1)
f”}mw?) '_j:rll'lul_l;ll +.|'i":1]|.:-’l }—E_',l" E IF-L::- ELI’ II.I_|-}+
—"

SinceA can take oany value froneero to unity, each term foihe power of
A in Equation4-10 must be individually equaio zero. Instead gfist one
equation, the original Schroedinger equation, there are nownfamte
number ofequations since thexpansion irterms ofpowers ofs isnfinite.
Generally perturbation computatioage onlytaken to thesecond-order and
so these equations ashownbelow.

A’ terms (zero-order):
(" - B e =0 {4-11a)

L' terms (first-order):
f_‘rlﬂ'lw:'ll . Qi:rwiﬂl .E"u' Ewwcﬂ: =1 {4-11b}

A*terms (second-order):
A e Bl e g - g - B - BT =0 ()

The reason for introducing the variable was to produce the separate
equations4-11a-c. Now thevalue ofa can be set at unitythis means that
the full perturbation isreflected in the first andhigher-orderHamiltonians

(H"M 5 3 The Equations 4 through 4-8 camow be rewritten with
A=1.

H=g5ogaepmgi™y. {d.121]
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T 4-12b)

E, =£M—ETP+EY 4 (d-l2¢)
The goalnow is todeterminethe energy andvavefunctioncorrections
for the perturbedsystemusing Equations4-12a-c. The most common
practice is to take theorrections tssecond-orderTherefore, the discussion
here will be limited to thdirst andsecond-order energy correction and the
first-order wavefunctioncorrection. Thezero-ordewavefunction aneénergy

given in Equation 4-llaare alreadyknown as theycorrespond to the
unperturbedsystem.

IF;rl{'IIFEZI] _Eil.l-lw:"l.ll

To obtain the first-ordeenergycorrection for then™ quantumlevel of the
perturbed system, £, Equation 4-11b ismultiplied by the complex
conjugate of theunperturbedvavefunction w!*" andntegratedover all
space for theerturbedsystem.

FW:DFTI}IN'}'E] + f}l'lll;ﬁ":u:l _Eiﬂ]w:']] —E£1]1,ﬂ':ul]dT =1

J' “:'F'!Jl"l‘:" “Fd‘r*‘w(ufjjr“l |.|"|'d'.r_
EN Jw M dr - BN [ e = 0

The above equation can benplified byrealizing thaty® isorthonormal.
jw‘,ﬂrl‘]’ '{'*I;p'i':'dr ¥ Ig:-rl':'"f?“:'@!-':'mdr ']]fi,pr':{'" thar - E:E“ =0

This equation can béurther simplified byrealizing that4® is hermitian
(see Section 2.5 ariehjuation 2-20).

I(Hi"’w':“’} ”dr-u-jp'w"*!f'” Bige  EI [ty L g o)

E—:"I,I:lj‘wll:ll i df "'I“"’“I Hl'l:l I_l.'l _E_:“:.IW'I'ﬂI1Ff:|IIdT_ E;I'I = |::l
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I'F_(-IIT"J;H'I]"I:'_ :I:I1I:_+|l:_ EE” _ ﬂ

This equation can beeadily rearranged tsolve forthe first-orderenergy
correction of the i level of the perturbed system.

EI = [T B d e = o || [4-13}

The interpretation of this result is thie first-orderenergy correction is a

kind of average of theeffect of the perturbation on the unperturbed
wavefunction. Theerturbatioreffectwill be greatest at the antinodes of the
wavefunction and thieast at the nodes.

Example 4-3

Problem: Consider particle in al-dimensional box with a potential in the
middle 10% othe box.

Potentiale within the region ofit = x = Uk

Figwee 4-], A particle in o |-dimensional box with o constamt patentind blip £ in
the center 105 of the hox (Region 1) 18 shown, In Regions | and 111, the potential 18
sero 55 0 the model [-dimensicmal Particlesm-a-Baox
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The potentiakverywhere else in the box is zero. Figure 4-1 shows a picture
of this system. Calculate theenergy of the system up to tliest-order
energy correction for the (a) ground-state, fiist excited state, anthen ()

for any level n.

Solution: As can be seen Bjgure 4-1, the system mokendown into three
different regions. Theperturbation is isolated to Region II.

Within Region 1l of thebox:

i} 1 T .. M v -
H=_E%+£‘, H..m:_-:_miz_l H“'=E
oo M E e aten 2-19)

(@) For the ground-state = 1):

i
Wio = Eﬁ!nrm] Ema
(F Ry Eml
a ;
A e LA EL—F [ s ”L% 1984
B ;
- E B - ‘!’_, + 01984y
S
(b) For thefirst-excitedstate(n = 2):
o _mr’z,_-:: et _ HE
= L L L J1 et Er:lri..: Em,[.‘l
g __I:'lwn:-l Frib w'ﬂ'!} _ E_ET;“!{_I_‘EM]J: —akdL e
om? A= ra '
f g oL
E,..=E L4 EL = ""! — LA 1g
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(c) For any level n:

£ = el - -1 L sz ))

hnt

Ems’

E, = 2ot - -l hsinlae

L]

Note that the perturbation in Example 4-2 results irreateyr first-order
energy correction in the ground-state than in the first exsttgd. Infact, it
can be seen by thgeneral solution impart (c) that all odd values of n will
result in a largeffirst-order correction thamevenvalues of n. In order to
understand thereason forthis behavior, thewavefunctions for the 1-
dimensional Particle-in-a-Box problemr,,(,°’, shown inFigure 2-2 must be
compared to thperturbing potential ashown inFigure4-1. Theperturbing
potentiale is limited to the center 10% of thex. All stateswith an even
value of n have aode in thewavefunction at thecenter of the box in the
region of theperturbingpotential. As a result, theffect of theperturbing
potential isminimal in evenvalued nstates. However, in statesth an odd
value of n, theeffect of the perturbation is the rgatest bcausethese
wavefunctionshave anantinode at the center dfie box. The physical
interpretation can be made bgcallingthat the squaref the wavefunction
for a given state r(functions arereal in this case) corresponds to the
probability density of the particleStates with oddralues of n have minimal
probability desities in the center 10% of the bwhereas states with even
values of n have high probability densities in this regesulting in a larger
effect to theenergy of theparticle. Thegeneral solution in part (@lso
predicts that as rincreases, the first-ordeenergy correction becomes
smaller. This is because the kinetenergy of the péicle increaseswith
increasing value of n and tleéfect of the potentidbecomes lessignificant.
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If the energy othe model or knowrsystemchanges as a result of a
perturbation, thewavefunction for thesystem also changesfrom its
unperturbedform. The first-order correction to thevavefunction for a
quantumlevel n forthe perturbedsystem,y "), can nowe obtained. The

first-order correction of th@vavefunction came expressed as a sum over the
unperturbed wavefunctions.

I||' Eﬂ Ta 'l'\-"l I:d_'ld:l

The sum is over all dhe unperturbedvavefunctions (th basisset). The

terms labeledz!) areoefficients reflecting theontribution of each of the
unperturbed wavefunctions to tlsem. Thecoefficients al) camow be

determined. Equatiof-14 issubstituted into Equatiofr11b.

.fjr|l:l":‘_:l| _'_f;u'lf-wil]] _E:I::-:-will S I:-wEElb =0
(I B A BN g

Ela:':"'f}'(u? ‘E"J] :I!Pr"'” ! * Hl'“lp' .E‘“:llprl:'::l 1
L

FIeNES - EM ) e - ENE =
F

This result is then multiplied by

0)*

Vi

and integrated overall space.

El':':lll ||.-| E||||-:r .:u|+ﬂ|upllll {'P"_:U:||:-"lm1||l:'rim Pm'l |.-| |:|||':|_ i

When i = n, thesameresult is obtained as in Equation 4-13 due to the
orthonormality ofy®. Whern = n, all of the terms vanish except whien
k.
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{EII}'I EI I}+I:LU_I[II |.||';|'||||"I,IIJ'|'- =

(vl

Eim ‘Etm

i
“ 1

an = (k) i4-1%)

Equationd4-15 camow besubstituted into Equation 4-14.

HIIIJI_I,II-'I"
wf.”=E.] ] Ly fd16]
i

I ) 1
L N

.

The wavefunction for the perturbesystem up to the first-orderorrection
becomes théollowing expression.

AU ('-’IIJI{-I H W!.w} i
W, =%, t e
iz IE-..I'\.I - I&i-l-

[tirsi-grder coorection] {4-17]

It is important to note that th@avefunctionobtained inEquation 4-17 is
not yet normalized. It will need tbe normalized based on the number of
unperturbed wavefunctions included in the summation. Also note that
Equation4-17 is onlyvalid for systemsvith nondegeneratstates(whereby
EF™ = £ The correction for degenerate statél be developedater.

Example 4-4

Problem: Determine thenormalized ground-statevavefunction for the
system in Exanple 4-3 up to the first-order correction utilizing umte 5 of
the unperturbed wavefunctions.

Recall that:

H™ =g {withen the region of % <5 2 1)
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and

=

|-|- :" 1
- ' -I"I_

"1;' 1
ht —
v L ,I
Solution: The perturbedavefunctionwith a first-order correctiorsummed

to then =5 unperturbed wavefunction is flows (N is the normalization
constant):

1 o HE |

g Mg vagw™ e el e uli M o ait )

Eachcoefficient must beolved forusingEquation4-15.

L
:.Im = I =
2l EJ.JE:::nl.
25 % [3..1::) { =
— 5| — |8IN] —
m_ L% AL _}'-.L,Jm -0.1919¢ T
' (1-3")EM REM B

4| IE'I 41::IE:::M
u
i \
1;: 'F gm[?};ml\%
L it A J 7
all) = G L T
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2.5 - 1

rprturbed

Figure 4-02 The pround-swate perturbed wavefuncoon up 1 a first-ordes
correction for 8 particle in o |-dimersdonal box with a positive potenisal blip m the
center 10% of the b as described in Examipbes 4-3 snd 4-4,  The potential & i=
equaal to four times the unpertubed ground-state energy,

Eachcoefficient isdimensionless aequired since represents a potential.
Note that eacheven value of n results in aoefficient equal to zero
representing no contribution from these wavefunctions. An exact
representation ofhe perturbedwavefunction isobtained byadding an
infinite numberwavefunctions;however, the contribution afachfunction
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decreaseswith higher-orderwavefunctions. The wafunction for the

perturbed systerbecomes:

¢ K
. I & L = < !

] 01"« 002399 g™ ~0 007475 |
LY 1 y

The wavefunction canow be normalized.

- N

w0 02399 ﬁ_. el - u.mmﬁﬁw;“-‘

1 1 ;

IIl..r 2

dr =1

= —— -

il
1

|.~. - "'—- =-I
1+ 00006214

The normalizedvavefunctionbecomes aollows:

0] L a - = [
by 3t 02399 g Wit ﬂ.{hﬁl--fl?ﬁﬁw'; '

For a positive potentice, theffect of thefirst-order correction to the
ground-statevavefunction, ", is taeduce the probability density of the
particle in thecenter of the box.This isshown in Figure 4-2 for thease
where ¢ =4E(? . The probabilitgensity has diminished for the particle in
the center 10% of theox where the positive potentialip € exists.

| Point of Further Understanding
Use a spreadsheet program to explore the [st-order ground-state
wavefunction obtained 1n Example 4-3. In the first column, list 2L values
from O 1o | in 0.1 merements. In the second column, compute the value of
the ground-state unperturbed wavefunction (" JL ) for each of the x/L
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values in the Arst column. Then create a defined cell representing it as the
ratio of

£
=il
LI

Inanally set this ratio to 4. [In the third column of the spreadsheet, compute
the value of the ground-stale perurbed wavefunction as given in Example 4-
4 far each of the */L values in the first column using the defined cell. Make
a plot that contains both the perturbed and unperturbed wavefunction as a
furction of /L. Change the value of the defined cell

&
EIUI
|

to values less than 1 to very large values obgerving how the perturbed
wavefunction changes in shape. Change the value of the defined cell 10 a
negative ratio signifying a negative potential. How does this change the
shape of the perturbed wavefunction? Is this shape of the perturbed
wavefunction expected? Explain.

The second-ordecorrection to then™ state energy of the perturbed
system, £, camow bedeveloped. The approach is similar to obtaining
the first-order energycorrection. Equation 4-11c is multiplied by the
complex conjugate of theunperturbedn®™ state wavefunctiony”, and
integrated over thperturbed system.

[ W - A e
_'E'.E-IHWJ.“ _ E.:IIU"E” _-EEE]W:-” }\1’.":‘ -0

Upon taking advantage of theethonormality othe w‘® wavefunctions and

the hermiticity of®, the followingexpression results for the second-order
correction for the n statef the perturbedsystem.
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, e e [!-win]-H..|]w|n:dr][!-wl;n:-*lr_;riljlwlmdf}
E.: | =!"P,'IJ] jfl 'I;d-f"“.l:l'i!'+ :%—'ﬂ tEil:“ - E.::J

(d-151

In terms of Dirac notation, Equati@dnrl8 may be expressed fadows:

H".lll

EF =

with

Y| et
. . W ]H ||,u-Jc 1y
11l RN |:I- n '
H }I'pl"' .'I.+j_;" EM _ 1

[4-1%]

The expressions ifEquations 4-18 and 4-19 are valid only foon-
degenerate systensE," = £/}, Also note that it ispossible to have a
non-zerosecond-ordeenergy correction (and even higreders) even if the
perturbed systerhas only dfirst-order perturbing HamiltonianWhile the
first-order correction to the energyepresents an“average” of the
perturbation to ajiven unperturbedstate, the second-ordeorrection to the
energy represents thmixing” betweenunperturbedstates as eesult of the
perturbation.

Example 4-5
Problem: Consider the same system asExample 4-2,a Particle-in-a-Box
with asinusoidalpotentialinside,

E=
)

~ A

HY = rein

Calculate thesecond-orderenergy correction to the ground-state of the
perturbedsystemincluding up to thex = 7 unperturbed wavefunction.

Solution: Since theperturbedsystem only has first-order perturbation,
HY =0. Equation4-18 summed tm =7 is a®llows:
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EM = o™ By P o)™ Ay Pdr)

EII:I'I - E.Iz:ull
[J.qu:l..ll';rﬁlw%mﬂlruj-wiuI.J}Illwfll?dr:l
¥ EM _ gt i
(Ij.l"lﬂ Hl;:l {& Iﬁl H]-i,!-"m I:l l!ﬂ:ldlr]
’ £0 _ g
(o™ A Oy o) H Py dr)
4 T——— F.-“I E‘In
‘IFID chwlmdrﬂjwml Hu: :-F-_mﬂlr:l
E;:I:I] = EE.I
(o OO de) ™ By ®dr)
"' gl _ ity ]
i T

Since they ® wavefunctions are real afd®" isiaefunction,
_fl;.r:"'.f} My ar = _h,ﬁc""“f;f"'wi"]dr )

gl ([t g '[fhf.m-’:a":r’l.:-"-:ﬂ':fr}l
"1

{1 -iD. -
E g o
AT e e
Ellcl B E;.‘lr - r|1:| E-‘U.l

R S U A
Elu_:h:. _Ein', E;;-:I] _Egu]

The integrals in theumerators can nobe solved. Due to symmetrgnly
odd values of n wilcontribute tothe sum.

iw'{u:ﬁrmw:mdr

=_FI5“"| _]3"1 e |$1|'|| S—— |,”'.,; =3 R "r[m[ﬂ ]—]]
Ll.l '\. . '\-\.L _L.__ [.l'i —1“.'1' ij
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n 3 § 7

I " Iu-l H -:"rw S‘-- dr LS54 b 2021 -0.0361

&

Since £™ - £ = (1 - n*)E™ . thesecond-ordeenergycorrection for the
ground-state dhe perturbedsystembecomes:

, ? b 2 - 2 ! E
PR ﬂ—‘ﬁs'if . '}"D:":I] N ﬂ'ujﬁ,]} ] ‘qﬁ_ - 005337 2
1=1 1-13 -7 g™ Ei

43 TIME-INDEPENDENT DEGENERATE
PERTURBATION THEORY

The non-degenerate perturbation expressionsh#vwat been developed in
the previoussectionwill result inzero denominators for degeneratstems.
As a result, the gproach used tambtain the expressionor the various
orders of corrections foa degeneratsystemmust bemaodified from the
approach used inon-degeneratsystems.

Consider arunperturbedsystem whera givenenergy level n has an r-
fold degeneracy. Thimeans that there aremavefunctions thatvill result
in the sameenergy, £, when aplied to theHamiltonian, #¥. In this
notationscheme, the refers to thesariousdegeneratestateg 1= n = r j.

v If']l.lf".'.m _ .E_,':.mi:-" 1 {4-30

EM=ER = = B (421

Now suppose this degenerate system experiencestusbpdion. The
Hamiltonian for this perturbegystem isd , and theavefunctions for the
perturbedsystem arey,. Thevavefunctionsy, may baon-degenerate,
have afraction of the degeneracy, or irsome cases no change in the
degeneracyelative to the unperturbexystem. The change degeneracy in
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the perturbedsystem has to davith the nature andsymmetry of the
perturbation relative to the unperturbe@vefunctions. For the perturbed
system:

F}- E= lDF}'l'J_I + ._;|_=._|;'||-|I| B [4_11]
Ay, =Ey,. (4-23)

Equation 4-22 for the perturbed degeneratesystem isanalogous to
Equation 4-6 for the non-degeneratgerturbed system. A natural
assumption at this point fat thezero-ordewavefunction ofy, isy'® as
in Equation 4-20. Ifthe eigenvalueE!® imon-degenerate, then the
assumption is certainljrue asthere is aunigue normalizedeigenfunction
that will satisfy Equation4-20 (this is precisely the approach used in the
previous section). However, E” has a degeneracy of r, then there are r
normalized eigenfunctions along with an infinite number of other
normalizedlinear combinations of the functionsthat will satisfy Equation
4-20.

i st 4o e oy

I':| Iw::l:'] n r] IIF.ED.P I PR & I:ur I‘u"l_:.-}l

For the unperturbedystem, anyrormalized linear combinations of the r
unperturbed wavefunctions aracceptable solutions; however for the
perturbed system, onlycertain normalized lineacombinationsform the
correct zero-ordeperturbed(unperturbed) wavefunctiong® .

#in =Fopl (1<i<r) {4-24}

The ¢ wavefunctionslepend on the typef perturbationthat thesystem
experiences. Thperturbedenergy eigenvalues amdavefunctions can now
be written in terms afrders ofA:
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. = l:'lﬁ::.l + _.!__'l;c.'in - n=L %3 .0 {4-25}
E =gt (n=1,2,3,...r} {4-I0)

For an r-degeneratgystem,there will be r perturbedavefunctionsy,,
and r energgigenvaluesgk,. Equations4-22, 4-25, and 4-26 can now be
substituted into theSchroedinger equation for the perturbedystem
(Equation4-23).

Hu, w B,

(UH A e e e
_t__:l'}E-l;':l.l 1 -:|.'.E_:”-+ . _:l[_f:l.l:l;ﬁ,lfl 1 .-:l.ll,!-"_:n; —::I

Ordering the orders of theoefficients & A yields thefollowing:
~7 (zerosorder): FGIM o it yg= 1 (da2T)

A" (first-order): FIM g gt o IR Ly gt
(R EP e = f M = L ek (d.26)

The sameorocedure as in the non-degenerzdse is nowcontinued to
obtain the first-order correction to thenergy. Equation 4-28 is now
multiplied by the complex conjugate of one the unperturbed degenerate
wavefunctions, ™" (1= m < r}, andintegratecbver all spce.

m:l ¥ q‘l l'llli_!’ii“:'}

{w:ﬁ |Ht=-|-- li-"'i”:',' _ E:-‘-: I:',‘!_,;::ﬂ lrﬂm‘- - wtum Hn

Since H® is hermitiarfseeSection 4.2),

|"|;.:."“| |H'" |'|l""1 III' ,E,'-"'l'rp""' |l.l|"'
L] i |I

E:-“{ |r|||ul,.|'|.-"- Er |{ } |II|;|,|'J|"I ffll]llili{'l" '-I:':'P'Lm

)
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(i

The expression forg!® irEquation 4-24 can now be substituted into
Equation 4-29.

I"'l_

':'F" [d.20

o 3 Vo Pl arh }
EHW"TJ |-H|“|#"Em|:| £l E o { [ |'i'5'( rl i {4-20%

The degeneratenperturbedvavefunctionsy!® camlways be chosen to be
orthonormal. As aresult, the relationship for orthonormality can be
employed(seeEquation 2-24).

o TR e §_=14ifi=m)

=0 if1 2 m)

The orthonormality relationship carow substituted into Equatiot30.

Ef |.':'3" 1 I'HLI:Ilw';l:I]ll' EII.I E'—' 5.

TL l{u—'” |H“'|u':" E,E”ff.,,}=':|'

f1=2i=r] (4.31)

The expression ikquatiord-31 results i homogeneousquations.

‘) {I::'FIICI I!:jr-l'-:l

;prf“:'} E:"’] rri.I:q.'-rf"'|J-;"":'ll.:-"':':"}l e 1I!_,l ||H1n|wm:} -1
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o [ W
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I:: 1 |H- Illb-".m'j""i;'n.'u""”l |H” ||Fr:|:| ot {':h'f!tllﬁlll|wf°'}—E:“] =0

In order for thesequations to hava non-trivialsolution, the determinant
of the coefficients must be equal zero. Theresultingexpression icalled
the secular equation.
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d:l|l:wffl |H'.l|1|,|:-rfﬂl-:"| - E£l=-5m.| =1} (4-32)

The first-order correction to the energy is determined by solving the
determinant. Thecoefficientsc; can then b®und by substituting back into
Equation 4-31.

Example 4-6
Problem: The Particle-on-a-Ringxperiences théollowing potential:

Flx)—= Esm ¢

Determine the first-order energy correctidoghe degenerate;=+1  states
and the value of the coefficients for thero-ordewavefunctionsg(® .

Solution: The first-ordeperturbing Hamiltonian for theproblem can be
written for convenience in theofiowing form:

2 _E:I.+ _ E-Il'-p xl:

HY = gsin? g =£[T‘J.

The unperturbeavavefunctions for thd”article-on-a-Ring argiven as (see
Equation3-7):

|

[4L5] oy

I = | —F -
- Ir

The followingequations must bsolved:

c, < lﬂ]ﬁ-ihmim}_fum}f f-'z'-il!-"::n"
el [ ™ |

m|w<m} 0
w2} - £0)-0

The followingintegral needs to be solved:
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Thisresults in thefollowing equations:

The non-trivial solution is when tHellowing determinant iqual to zero.

£_5u.~] =t
V2 4

- =0
il E-E,'I”
4 '..2 A
'FE_EHJ)E_EEW‘:,“. pn_fLE
lLZ " L-'-L. ' o2 4

This resultdn the following first-orderenergycorrections:

B _E EW zﬁ
’ q B 4

Now all that remains is tdetermine thealue of thecoefficients forg!®

for the two resultingstates.  Sincgs® must be normalized, one equation
that must be satisfied is
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As a result of the perturbation, tdegeneracy i®st for them,=+1 state for
the Particle-on-a-Ring.

PROBLEMS AND EXERCISES

4.1) Determine the normalizednd optimizedground-statewavefunction

for the one-dimensional Particle-in-a-Baxsing the followingtrial
wavefunction:

i '._: b v 'zﬁl
Yo = L] I x g N -
' - L]

L

where p is anadjustableparameter and Ns the normalization

constant. Compare the ground-state energy obtained usirggtrial
function to the trugground-statesnergy.
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4.2) A simple model fopredicting ultra-violet/visible absorption spectra of
conjugatedpolyenes is thdree-electronmolecular orbitaimodel. In
this model, theelectrons of theonjugatedt system ardree to travel
the length of theconjugatedcarbon chain. In this model, the 1-
dimensional paitle-in-a-box model problem can be used to simulate
the molecular orbitals of thelectrons in the cgugatedchain. The
length of the box, L, is equab the length othe conjugted carbon
chain.

L=a. . (150pm)

The valuen,. corresponds to theumber otarbon/carboibonds in the
conjugated chain. Thelectrons can berdered two at a time in each
energy level. Irthis problem, wewill considerlycopene.

a. Determine the energy of the transition from the lowest occupied to the
first unoccupiedenergy level for lycopeneDetermine the wavelength
needed for this transitiofd —hc'A&) The experimentabalue for
lycopene is 474 nm.

b.  The valueobtained from part (a) above is notgoodagreement with
what isobtainedexperimentally. This is inpart because the potential
on the electron isot zero olconstant. The potentiaan be improved
by having it changesinusoidally along th@olyene chain. Choose a
sine function thawill have anappropriate periodicityover lycopene
and treat it as a first-ordperturbation. Repeat theomputations from
part (a) using up to second-order energyorrection.
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4.3)

4.4)

Chapter 4

Consider aParticle-in-a-Boxwith a ramp-like potential thahcreases
fromx=0tox=L.

V(x)=&x
Determine upo the second-ordemergycorrection #ong with a first-
orderwavefunctiorcorrection forthem=1 and=2 states.
Suppose theotential inpart (a) is due to gravity because the box is
vertical. Apply the results from p&id) for an electron at the surface

of the Earth.

Determine thérst-order energy corrections firem, = £ 2 states for
the Particle-on-a-Ring problem when

g —coos ¢

Find the values of the zero-ordeavefunction coefficients.
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Particles Encountering a Finite Potential Energy

The systems we hawudied so fahave all involvedparticles confined
to alimited region ofspace such as l@x, circle, or asphere vianfinite
potentials. In the case of a box, ieplicitly stated that the potentials at the
“walls” of the box areinfinite. Though not explicitly stated, inrder to
confine aparticle to a circle oa sphereof constantradius r, thepotential
must beinfinite for anyplaceoutside the circle osphere. Removing the
requirement ofnfinite potential at a given point has te&ect of nolonger
being able to completely containparticle into anylimited region ofspace
even if the potential exceeds taeergy of thearticle. In additionguantum
mechanics predicts thatparticle carbereflected by aotential even though
its energy is in excess tifat potential. Thesephenomena are entirely a
guantummechanical result due to the wave nature of matter.

5.1 HARMONIC OSCILLATOR

The harmonic oscillator is used as a simple model for the vibrational
motion of atoms along bonds in molecules. This will in turnubed to
modelinfraredabsorption spectroscopy in thextchapter.

Consider a springvith a fore constant kvith a Hooke’s law potential
anchored at one end and attached to a mass of m on the othershndms
in Figure 1-1. Theparticle is confinedo travelonly along the x-coordinate,
and for convenience, the equilibriymosition of the spring (point of zero

potentialenergy) is ak, =0. Thélamiltonian for the particleecomes:
85
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The Schroedinger equatidor this systentan now beeadily written.

Hyx)= Ewix)

P gl i "!
- i—mlk“ Yt = Byl (52

The solutionto this differential equation is wellknown. The energy
eigenvalues are quantizedfaows:

£ =fv +-%}le; w=4_1,2 .. {5-1
and
& .
o — J: [rasffamedive). (5-4}
HH

The wavefunctions can lexpressed in theflowing manner:

o= o= Moz < {5-5)
2 =X ':.5'6]
—
] -
{57)
i o N
W, - : {5-4}
L elpt

The functionsh,(z) inEquation 5-5 are polynomiais z known as the
Hermite polynomials. The Hermite polynomials can be generated from the
following formula:
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L3
4

. .
Eolz] =01} ¢! m—g™l [5-9)
dzr'
The Hermitepolynomials forthe v +1 state(the next state) can also be

obtained from the following recursion relationsigigenthat #,(z) =1.

dh {=)
o'z

ho iz =2 (2] - [3- L0

The first six Hermitgpolynomials areshown inTable 5-1.

The normalization constant for the wavefunction is obtained by
integrating the wavefunctionsquared (thewavefunction is real for the
harmonic oscillator) over all space As mentioned previously, only an
infinite potential cancompletely contain a particlen a limited region of
space. Since thepotential for thesystemapproaches iiriity at thelimit that

X approachesnfinity, the limits on the integration overallspace must be
0T,

Table §-/. The Hermite pobmaomizls are @hulated oplov =5

= Hermite Folynomaals, &4z)
0o |

1 4

2 4z =3

i Br? =122

4 162" - 482" + 12

5 322" —160s" + 120z




88 Chapter 5

Example5-1
Problem: Demonstratethat the ground-stateharmonic osidlator wave-
function is (anormalized and (b) is orthogonal with thrst excitedstate.

Solution:
(&) The ground-stateavefunction,y,, isvrittenas follows:

¥ = '."'In'il:-[I:"‘-’-:I'I = Fﬁ""z
1|||;r‘

If the wavefunction is normalized, tHellowing integral must be equal to
one.

@ L TR PR
STur = P PR L [ G
_LFui!"u E-:LE Flr_ J;L 2 |

This confirms that thground-statevavefunction is normalizedBased on
this result, it is extrapolatethat therest of thewavefunctions are all
normalized thougthe normalizatiortonstant iglifferent foreach level of.

(b) The wavefunctiony,, céaoe writtenas follows:

by = (2T
Y £

If the wavefunctions arerthogonal, then théllowing integral isequal to
zero.

- 2 - e I?:'f':l g s g L]
IF.H-'“H'J.’=C —Iﬂ? de =g —I\fﬂxﬁ* dx+ fore™ " de | =0
-4 T - L o P J

This demonstratethat thevavefunctionsy, ang, amthogonal. This is
true for all ofthe harmoni®scillatorwavefunctions.
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Example 5-2
Problem: Determine explicitly the energy eigenvalue for the ground-state of
the harmonimscillator byusing theSchroedinger equation.

Solution:

_E L]
Poel grt |

-

+4I;|5.‘..J.'2|||.-",._, =Eul.!-".]

At R a Ta:  riiien]
—1—{— o N T ERh rh ”J+Ji-i..l:zl;¢r{, =Foly,
rt

F:I::'E 53{-_'1

r Spl L
LI Tl G Rl I L
i3 7.4
E':I:R L _ﬁ_f‘r] +{.*_;-'|
int Int v

i T g '
S]Mﬂf:[ft-ﬁ—{u—]z; Eu.,_.'ﬁ_ EJ_L[E]I: +Llir? = Lhew

2m' F Iml K

bl

This is thesame result as obtained fra&quation5-3:

Ey— {01 e =Y haw.

The first severalvavefunctions fothe harmoniascillator are shown in
Figure 5-1 andshould be comparet the Particle-in-a-Boxvavefunctions
shown in Figure2-2. Note that th wavefunctions for the Particle-in-a-Box
and the harmonic oscittar have similarshapes for eaclkorresponding
energy level. The principaldifference isthat the harmonic oscillator
wavefunctionsasymptoticallyapproach zero as x approaches infinity (as the
potential approaches infinity). Because the wavefunctions must
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Figuwre 5-1, The first several harmonic oscillator wavefunctions are shoam along with
the ¢lassical tuming points based on the quantum mechanical energy Tor that level

asymptotically approactzero as xapproachesinfinity, this results in

curvature in the wavefunctiorend consequentlthe ground-state energy is
non-zero.

To betterunderstand the@uantummechanicalharmonic oscillator, the
results othe quantummechanicakystem can be compared to those for the

classicaimechanicabystem(described infSection1.3). Theclassicaturning

point for the masst x,,,,, occurs when the energy of a given state is equal
to the maximum potentiagénergy of the system. This is done using the
ground-statequantummechanical energy.

F,=ttar=%he (elagsiva, wnalogy)

Solving for theclassicakurning points,t x
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In the classidamechanicaharmonicoscillator, thepoints + x,,, correspond
to where thegorobability offinding the particle is thgreatest since the mass
stops athesepoints (zerokinetic energy), and therobability offinding the
particlebeyond thesgointsis zero.

This “leaking out” of thewavefunction ast asymptoticallyapproaches
zero can beseenquantitatively by computing the probability density of the
particlebeyond the classicaélirning points+ x,, . This is donespecifically
for the ground-state in the regions efo<x<-1 and L<x<w where
classically it would bepredicted that thershould be zergrobability of the
particle existingbecause the potentia@nergy exceeds the energy of the
particle.

Probability of the Particle Beyond the classical turning pointsypr

[wrmprgdn = [prowgdy = 2 [ropadt = = [ de « DASTI (5-12)
- : ! v

The integralin Equation5-12 cannot besolvedanalytically; however, it can
be solvednumerically bysetting the constant ¢ to any value (tesult is
independent of the value of the constant c). As casebe by theesults in
Table 5-2, theprobability of the particle to exceed the classitahing
points decreases athe value ofv increases. This is ipart because the
region ofspacethat the particle is beingoafined to by the potential is
gettinglarger (notethat + x_,, isincreasingwith v), and thecurvature of the
function isincreasing due to the increased kineinergy othe particle.

The points ofmaximum and minimum amplitude for thgarmonic
oscillator wavefunctions(indicative of thegreatesprobability of themass)
can be found by taking tHest derivative of thevavefunction andgetting it
equal to zero.
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Tuble 5-2: The probability of the panicle beyond the elasieal luming points, $x__  for a
quanfurmn mechanice] harmonis oscillacos is listed bebow

|
. 9 Probability Beyend the Classical Tarnlng
" Paints, 2x_
0 %=
F 01573
]
I P 0116
3
L
F i 0.0e507
C

The result for the ground-state analogous to thelassical system. The
greatesprobability of finding theparticle is atthe equilibriumposition for
the spring. However, the ground-staenergy is notrero, E, =1hw, asin
the classical mechanical harmonic oscillatdihe classicahnalogy is that
the particle is not at rest even in the ground-state. The points of greates
probability dasites are done for several otteates, and the results are
listed in Table 5-3. As the valuef v increases, saloes thecurvature
resulting inan increasinghumber oiodes justike in the Particle-in-a-Box
wavefunctions.

Another interestingfeature of the quantummechanical harmonic
oscillator is that the eargy difference between subsequetgvels is the
same: E,,, —E, =hw. Thideature of uniformenergy levels is result of
the symmetry of the system.
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Taile F-3: The points of maximum and minimom amplinde for @, for a quanbam
mechonmical hermonic oscillator. Theae represent the points of maximum probability densities
for the particle.

s Maximum and Minimum Amplitvdes of
Wy
0 i
| " 1
C
2
0, + 158104
iC
3 06021 20341
C I
Chemical Connection

Determine the maximum kinetic energy for a svstem whereby k = 533 MN'm
{approximate force constant for a HCl bond) and m = 1.00 kg, What are the
classical turning points for this mass? Could this be measured for a
macroscopic svstem? Repeat the computation for the case that m s the mass
of o hydrogen atom, m = 1.66 x 107 kg, For the mass of hydrogen, what is
the energy involved in the ransition from the ground-siate 1o the first excited
state? If this transition is caused by the absorption of a photon of
electromagnetic radiation, what would be the wavelength of the photon and
the part of electromagnetic spectrum that this photon would correspond to?
The emergy of the photon, E, can be related to the wavelength of the
absorbed photon, A, by using the following relationship:

he

A E -E = E -—

phae

where ¢ 15 the speed of light.
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The system canow beexpanded for describing a diatonmimlecule. In
this case, the spring is separated by differentmasses as shown kigure
1-2. TheSchroedingeequation can be written as follows:

ﬁ’l[;.'i NP T I AT |

- .
lf?.+1:-'_1‘:1+1-"k{"i —F _"U]2 Erleaa b Fpls o)
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Im, fa3) Zm: ﬂr;f

+%k':--"l1 -1 - "'u]TJul-"f-fp.l;}: E'ﬂ-"i.:l”.rz]

Separation of variables can be obtained by using the center-of-mass
coordinate system asdescribed inSection 1.3. Recall that thke center-of-
mass coordinate systamtroduces thdollowing coordinates:

{ma, +mmasy]
FET, —I — L. rr -
ey + g}
The coordinate r represents the displacement of the spring from its
equilibrium position, and theoordinate s corresponds to the center of mass
of the system. Using this coordinate systemesults in the following

Schroedinger equation that is similarform to theexpression in Equation
1-18.

r’-: -1
po_p 1

PRET, zhz wiF, o) = Epir,5) {5-13}
L -

The termp is theeducednass, and M is the totadass of the system.

e, MM
|“=-_'_I__:I_' M=m|+m:

M| rh

As discussegbreviously inSection1.3, thekinetic energy operator,
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2M’

corresponds to the translation of thatire system in space. Since only
vibrationalmotion is of interest antihe coordinates s and r aeparable, the
Schroedinger equation is reduced to the coordinate r.

.3
[F—'—+Ji;kr: ]w[ﬂ:.n’:'wl;r} (4-14)
L2

s

Equation 5-14 ignathematicallyequivalent toEquation5-2. As aresult,
Equation5-14 produces thesameresults adefore with thaeduced masg

instead of m and theoordinate linstead of x. The following expessions
are changedand the resbf the expressiongrom beforeremain the same.

= E {5-15)

Yu
‘ =\F’#Tj (5-1&)
z=cr (5-17)

FPoving of Further Understanding

Demonstrate that for the case that m, >> m;, the expressions in Equations 5-

|5 through 5-17 result in the same expressions as in Equations 5-4, 5-6, and
3-T.
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5.2 TUNNELING, TRANSMISSION, AND REFLECTION

In the case of the harmonic oscillator as discussed in the preéotisn,
the particle has amall but notinsignificant probabilitybeyond theclassical
turning points. Beyond the classicaturning points, the particle is
penetrating intaclassically forbidden regions whereby the potengakrgy
exceeds the energy thfe particle. Theclassicalanalogy ofthis penetration
is like walking through a briclall. If the finite potential barrier is narrow,
there is a probability that the particle maypergethrough the barrier.This
phenomenon is calledunneling. Tunneling is an importanopic in
chemistry as it explains sugihenomena as spontanedission reactions,
transfer of electrons through insulatorsbetween two semiconductors,
conformational chages of molecules, andactionsovercomingactivational
barriers for whichthe reactantbiaveinsufficientenergy toovercome. The
ability of aparticle totunnel has much to do with the particle’s wavefunction
and so the discussion here wiflcus on thewavefunction and how it
changes with potentials.

First we will take a diversion and consigeparticle that is free to travel
along the x-axis (a bosf infinite length). The potential is zero all along the
x-axis. Thismeans that the particl@ssesses onkinetic energy all along
the x-axis and there ar® boundaryconditions. TheSchroedingeequation
can be readily writtefor this system.

Hirp= -o— 2 518
(] 2 el [>+15]
Eod el
=F -
T fei X (5-19

The generakolution to Equation 5-19 is as follows:

ploey= 4e™ + Ba ™ k=

{5-20

Note thatthe generawavefunction for aree particle is thesame as the
general wagfunction fora Patrticle-in-a-Box. Theoefficients A and B are
determined by theboundary conditionshowever, sincethere are no
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boundaryconditions for theparticle along the xxas, the coefficients can
take on any valueThere are npoints of infinitepotential as in thease of a
box or finite potentials thapproachnfinity that cause thevavefunction to
asymptotically approach zero msthe harmonic oscillatorThis means that
the energy and momentum of harticle are notuantized. Theoefficients
will depend on how the systemas prepared, and there are no limitations on
the values of theoefficients.

The momentum of the particle can be determined by applying the
momentumoperator(seeEquation2-6) to the twagparts of the wavefunction
in Equation 5-20ndependently.

ﬁr{dﬂ*‘}=%£{de"‘}=ﬂa{,{g*’] (521}
M BT = %%{ﬁc"“ §— —kh{ B} {522}

The only diferencebetween the solutions Equationss-21 and 5-22 is the
sign, so it carbe concluded thatincemomentum is a vectaguantity, the
two solutions represerthe particlewith a momentunof equal magnitude
but opposite directions. # particle isshotfrom a cannon in the positive x
direction, the value of the coefficient B for the wavefunctissociateavith
that particle is zero. Likewise, adueling particle shot in the negative x
directionwill have a wavefunctiowith a ccefficient A equal to 2ro.

It is interesting to notehat the wavefunction fothe particle in this
systemextends from negative tpositive infinity along the x-axis. Since
there are ndoundaryconditions for theparticle,there is no quantization or
regions where the particle has the greatest probability density. The
wavefunction isevenly distributed throughout the x-axjgst like a pure
wave. It can be concluded thatpart what “limits” the wavelike nature of
matter is the potentials thatparticleexperiences. lIfiact, part ofthe reason
for our particulateview of matter is as a result of the potentitigt all
matter in the universexperiences.
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Point of Farther Understanding
An alternatively correct wavefunction for a free particle is

wix) = Cooslkx) + Disin{kx) .

I= it possible for the particle to have a ground-state energy of zera” What
will the real part of the wavefunction look hike in the ground-state? Why
must the ground-state energy immediately change when the particle becomes

himated to a fimite length, L, in x7 How does this restrichion im x resolt m
quantization of the energy?

To explore theeffect of applying a sudden potential on a particle,
consider thenypotheticalsystem shown ifrigure 5-2. This system can be
broken down into three separate regions. Th&gbaoriginates in Region |
with no potential. Thenergy of thearticle is E, and the particle is initially
moving in the positivex-direction originating in Regioh Regionll begins
atx =0 and has a constant potentialVgf At this point, the energy of the
particle is greater than the potential in Region Il. Region IIl extends from
= a to infinity with a zeropotential. The potential changes abrugtiym
one region to theext.

Free patcle wavefunctionsfor the particle ineach region can be
assumed since the potentisd constant ineach region. The general
wavefunctions foeach region aras follows:

poia)=de™ + Be', - . (3-233
. JIRE- V0
L) — *"]r.'h'mn'=I &, s R - %: (523}
y ok
Warls) = dge™ v 'H.lr.'f-'h . k= ‘—‘fr_ﬂ' {3251
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Fogurs 507 A hypothenzil swp patential svstem e 2 ons-dimensional
pankle 15 shawn, The swaiern is divided into thres ditiereon regions based an
e powencial energy for that repion. The paclicle is maving in the pesilve «
dirgeiion or 1o the raghe of diepram.

At this point, some interpretation of the coefficients for the
wavefunctions of theparticle in the three regioran be made. The particle
is stated to benitially travelling in the positivex direction inRegion | which
is signified by the coefficiera;.  Ahis point, it cannobe ruled out that the
particle may beeflectedwhen encountering thgotential in Region leven
if the potential isless tharthe energy of th@article. The reflection of the
particle backinto Region | isrepresented bythe coefficient B,. The
coefficientAy represents the particlaoving to the righthroughRegion I
whereasBy; represents theovement of theparticle to thdeft. In Region
1, the coefficientAy, repesents the particle leaving Region Il and moving
throughRegion Il to the right. TheoefficientBy; represents thearticle
moving to theleft in Regionlll. Since there is npotential in Regiorll,
there can be nceflection inthis region and the value Bfy must be zero.
The wavefunction foRegion Ill can beewritten as follows:

—
W lak= Ane™, k= vimE . {5-26)
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All three wavefunctions in Equations 5-23, 5-24, and 5-26 are
associated with the particle in this/stem. Since there armdifferent
wavefunctionsdescribing the particle in each of the regions, there are two
important criteria that the wavefunctionsnust meet. Recall from Section
2.3, because the wduactions lead to probability densities, the
wavefunctionamust be single valued at theundary otontiguous regions.

It would be physically unreasonable for a particle to have different
probabilities for thesamepoint in space. Hence, akk =0, y; andy must
have thesamevalue, and likewise at=a, yy; angly must be equal.

Alx=1x w (0= g L)
A+ 8, =4, 4+ 8B, (5-27)
Alx=g Wala) =y la)
A€ 4 Fet 2 g, 0™ {3-24)

The wavefunctions must alé® continuous. As gesult, the firsderivative

of yyandy; atx =0 must be equal all as the firstlerivative ofy; and
Wi atx=a.

My =0 JF‘Il = dw'-'l
d':': |1-'|1 d'[ rafl
A, - kB =k, 4, &8, (3-2%)
Ala = a Hw” = —{d ¥
i | av |
By dge™® -k, Haa ™ = g, o™ (5-10}

Equations5-27 through 5-30 provide four equations to obtain théur
unknowncoefficients(Bi, Au. By, and Ay). Theoefficient A; represents

the incoming square root tife probabilitydensity of theparticle and is set
by itsinitial conditions.
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We are interested in determining tipeobability of theparticle to be
transmitted oreflected by the potential iRegion Il. Since at this point the
energy of the particle igreater than thpotential in Regionl (E > Vy), it is
classically predictedhat the probability of transmission is one and that of
reflection is zero. Quantum mechanicallythe probability of reflection,
P is determined by theeflectedprobability density ofhe particle,

B[

divided by theincomingprobability density of the particle,
4,

in Region |.

|E|' iT
4.

P.rﬂ:,'u'n-r.ht -

(5-31)

The transmissiorprobability, #™="*** is determined by the probability
density in Regiorill,

2
|Am| ’

divided bythe incomingprobability density of the particle in Region I.

Ay |
Fl'ruum:lrll:!l il ||‘;'||] |:S_j.2:|
i

The sum of the probabilities of transmission aaflection forthe particle
must equal tmne.

Pnnunf;lun + Fl"{l':'l"\v.'\l'-'\t“' - ] {5 -33-}
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An expression for FT"™M®  canbe obtained by algebraically
manipulating thecontinuity expressions in Equatiobs27 through 5-30.

Frrnmnﬂshr! =|f+ - T {q‘jdj
g ] ey
\ o AVe ) ;:
Fince: 2sine =™ —e™",
o 1
_ wn [k
JLr i I+ - il .|:-. "ﬂ} I:S-E-f}

4 £ [ Eo
pole
b ' . A

The reflectionprobability isreadily obtainedy substitutingEquation 5-35
into Equation5-33.

! E ‘II.-. E Ikl .hll-

raaf I SECTEL TEIT, - L I\.F'l' EN ‘.--.'nl ! :
F =|-F =1+ : {5-36)

E10 ‘_.'-'!'_.Jﬂ]' ‘

The reflection probability is natecessarilyzero eventhough theenergy of
the particleexceeds th@otential. This phenomenon is callezhtitunneling
or nonclassical scattering.

First consider the case where the energy of the partialeush greater
than thepotential in Rgion Il {E == %y}
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i i #1 H n T
PIIJFJ'.T.'HI'-“ =1 . F\.lﬂ. I:.J':.._. H} =| . I..l'l' 50 {'ﬂ:ﬁ'a] | = -I
1 L 4EI-:F_F:'.-} ‘
EF’" i ‘I"..'.l A

It is reassuring to see thifie classical predictionf completetransmission
of the particle is obtained at thienit that theenergy of the particle is much
greater than thpotential inRegion II.

Now consider the case where the energy is only somewhat tlhaagethe
potential inRegion II(E > Vy). The sine-squarddnction inEquation5-35
variesfrom a minimum ofzero (completetransmission), to a maximum of
one (a non-zeraeflection probability). Complete transmission of the
particle will occur when the width of Region I, a, times the constant  is
equal tosome positiventeger, nmultiple of .

Complete Teansmission: kyo=nxr (u~123.0 {5-31)

The minimumtransmissiorprobability (ormaximum reflectiorprobability)
occurs when thiactork,a issome positive odd integer, n’, multipleo®.

Mimemunr Tronsanuyior:  kyo=——  (R'=1130%) [5-1F)

As can be seen by¥quation 5-35, the transmission probability(and
reflection probability) dependsn thedifferencebetween theenergy of the
particle andthe potential, mass of the particle, and on the width of the
potentialregion.

The pointsin Figure 5-34a and bthat represent zero reflection (or
complete transmission) are callextattering resonances. The large
variation oftransmission probabilities viatincoming kineticenergy of the
particle is entirely aguantum mechanicaffect. ErnestRutherfordfirst
observedhis scattering phenomenon 1909 bybombarding a thigold foil
with alpha particles. Scattering experiments continue to bdothes of
many experimental and theoretical studieShesetypes ofexperiments
provide muchinformationabout thenteraction betweeparticles, and it is
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Figwre 5-3  {a} The reflection probability of a proton with enegy of | ¥
encountering & pobential of 2 ¢l 1 shown as a function of the width the barner. (b) The
reflection probabelity of a protoa encouniering a polenidal of 1 £V s shown a3 a
function of increasing kinetic energy. The width of the potential, &, i | am As the
kinetic energy of the proton increases, the classical result of zero reflection is obeerved.
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the fundamental basis for determiniihgoretical ra¢ constants for chemical
reactions.

Now consider the casavhere the potential inRegion Il of the
hypothetical systenshown inFigure 5-2exceeds the energy of the particle
(Vy > E). Classically theparticle is forbidden tgenetrateRegion II;
however, wehave already seen in the case of the euam mechanical
harmonic oscillator thajuantum mechanicpredicts that the particle will
have someprobability ofpenetratingRegion Il and perhapsventunneling
throughinto Region IIl.

The constank; in thevavefunction for Rgion 1l will now be complex.

It is convenient to writean expression foky; that separates the real and
imaginary parts.

Ky =T {5-1tha}

e F o, = F]
P Lol . ! {5-39h)

The wavefunction foRegion Il can be rewritten in terms af.

Ii.:-'_,-r[--'l":l—.."!_;'.t'l?ﬂ"'* +-E'!||'F-II

Bk _ e O S {50}

The wavefunction foRegion IInow consists of arexponentially increasing
and decayingfunctions resulting in a non-oscillatinfunction. The
wavefunctions of particles in classically forbidden regions do not oscillate.
The probability oftransmission of the particlsito Region Ill (tunneling)
can be determinday substitutingequation5-39ainto 5-34.

Mo e
prrammsien | [:' ”f ]'IH [Sdl)
= | )£-1
Koo Ee )

As before, therobability ofreflection is equal to one minus the probability
of transmission.
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The probability that the particle will tunn& Region Il depends on the
mass of the particle, thgidth of the potential barrier a, and thdfelience in
the energy of pdicle to the potential of the barrier. Figurggiaand5-4b
shows thetunneling probability of arelectron and a protowith a kinetic
energy of 1 eML ¥ = | &) % L™ 1} encounteringa potentialbarrier of 2
eV of varying width. To put the values in Figurésda and 5-4hbinto
perspective, the diameter of an atom is on the order of 0.2 nm; hence, the
tunnelingability of the electron and proton ageeat at theatomic scale. It
can also be seen in Figursta and 5-4kihat the greater the mass of the
particle, the less likelyhe particle is totunnel into Regionll. As the
energy of theparticle approaches the energy thfe potential barrier, the
tunneling probabilityincreases ashown inFigure 5-5.

So far the potentidbarrier (Region 1l) has been fafite width. Another
importanttype of system t@onsider is one imhich the potentiabarrier is
of infinite thickness such as in a partidiiking armorplating. If a particle
is unable to tunnel due to an infinitehick potential barrier, there will most
likely be somesignificantpenetration at thatomic scale of thearticleinto
the potential barrier.

To analyze the penetration abilitf a particle into an initely thick
potential barrier, a new hypotheticistem isconsidered ashown in Figure
5-6. The system isimilar to a Particle-in-a-Boxhowever, theotential at
=L is finite andgreater than the energytbe particle. The potential atx =
0 is infinite containing the particle to thaositive x-axis. The potential is
zero in Region I, and Region Il exterfdsm L < x < o,

The generalvavefunction forRegion Iwill be same as in thprevious
systems discussed ihis Section.

—
wileh= AV + B e, k= WTE

SinceE < Vy, the generalavefunction for Rgion Il will be thesame as in
Equation5-40.

_y2miF, - £
a s o -

Wy (xh= e 0" = Bee™' o "
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Figure 5-4. The following plots display the tunneling probabilities of an
electron (&) and a proson (b} as the widih of the potential barrier is varied. The
clectron amd the proton have an energy of 1 eV, and they are both
encounsering a potential basrier of 2 ¢V,
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Figure 3-3. The numecling probability of a paruicle as a function of 15 energy
relative o the potential barrier is shown in this flgure. Bach curve represents a
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The wavefunction forRegion Il contains anexponentially increasing
component as x increase#\s x approachemfinity, the wavefunction in
Region Il will approachinfinity. This is anuntenable resubbased on the
Born interpretation - theprobability density of the particle willapproach
infinity as wavefunctionapproachesnfinity. Sincethis is not physically
possible, the positive exponential component ofvilae@efunctionmust be
discarded.

W [ap= e = [5-22)
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Patential Enemgy

E"-"'rll

0 L

Frgure 56 [n the following system, the potenfiad in Fegion | & oo except at x = 0O
where the potential is infinite. The potendial is comstant & V) througheut Begion 11 Region
Il extends froan x = L o infirity. The energy of the particle, E, is less than %y

Since the potential imfinite atx = 0, the wavefunction for thearticle at
this point must also equal to zero.

y",.[l}]'=r'!r ""Br "_-D
or
A, =-B,

This reduces thevavefunction for theparticle inRegion 1 to thefollowing
expression:

woirb= Apfe® = |2 204, sofke) = A siniked. (5443}

The continuity conditions can now be applied to wevefunctions for
Regions | and Il at =L. This resultsn thefollowing expessions.

A'y sinfkLh — Aye ™o (544}
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and
kd, cOSCREY = —orp due U 15451

If Equation 5-44 is divided by Equation 5-45, the following esgsion
results:

—
lan:.lr_[1=——£—=—| JE — .
el 1‘(1.._,—&_]

{534

Equation 5-46 indicates thatonly certain energieselative to Vi will
result inpenetration ofhe particleinto Region Il. For instance, § << Vy,
then tan(kL) will be nearlyzero indicating essentially no penetration.
Maximum penetration will occuior terms of kL that are positive integers of
n/4 resulting intan(kL) equako one.

wo=0E n= |23 547
; {547)

To put the penetration abilitgf particles into perspectiveonsider an
electron that is accelerated across a potediféérence of 1Volt. The
electron now has kineticenergy, E, of 1 eWl JAC* 16x 10" C=14%
107'°)). The electrorapproaches aimfinitely wide potentialbarrier, Vy, of
an opposing 2 Voltg3 2 x LG "1} The termoy, is computed &sllows:

JI{E"H:I'I:I']'J:RHEEMEI"" Tl f a
R 25 M
105107 e

Since the energy of thearticle is half of the potentianergy of the barrier,
oy = k. To obtain the mamum penetration of the particle, Equatisd? is
applied where n is equal to one.
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T
kL=a,,L=Z

Since ), =«™"*", wewish to determine atvhat distancgL + x) that the
wavefunction hasliminished, for the sake tfustration, to 0.1 of itsvalue
atx=L.

v - 1 8% wm

The diameter of an atom is dme order 00.2 nmindicatingthat theelectron

is capable of penetratirg depth ohpproximately &toms. Ashis example

portrays, the penetration of particles can have impog#atts onsurface

processes such adectrodesheterogeneousatalysis, or anyther process
that occurs at the atomic scale.

PROBLEMSAND EXERCISES

5.1) Determine thewavefunction for thev=3 ofhe harmonic oscillator
using (a) Equation 5-9 and (b) using Equatei0.

5.2) Determine thdollowing for a harmonicoscillator in thev = 2  state:
(a) the average kinetic energy, thg averaggotential energy, (c) the
average momentum, and (d) the avenagstion of themass. How do
the quantum mechanical results comparthat fora classicabystem?

5.3) Calculate theprobability of theparticle ina harmonic oscillator to be
beyond theclassicakurningpoint for thev =3 state.

5.4) Apply the harmonic oscillataddamiltonian to they, wavefunction and
verify that it is areigenfunction.
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5.5) For a harmonic oscillator in the ground-statetermineAp andix.
How does thevalue ofApAx compare to the Heisenbencertainty
Principle?

5.6) Locate the nodes for harmonic oscillator for stegev = 7.

5.7) The normal bond lengthxe, for an HI molecule is approximately 161
pm. The forceconstant of thebond is 313.8N/m. What is the
probability that thebondwill be 10% greater if themolecule is in (a)
the ground-state and (o) thev = 3 excitedstate?

5.8) The harmonic oscillator is arapproximation to describing the
vibrational motiorbetween atoms in a bond. TR®rsepotential is a
more accuratedescription. The first-correction tihe potential is of
the following form:

V(l) =gx3

whereby g isa constant. Determine thefirst-order correction to the
energy for a harmonic oscillator ihe ground andirst excitedstates.

5.9) Determine thenaximumpenetration depth of a proton that is in the
same system as describedFigure 5-6. The energy dhe proton is
1.6 x 10" J and the potential barrier Is2 x 1{F™ }.

5.10) Make a plot similar to Figure 5-3b buinstead for an electron
encountering an opposipptential of 2 eV.How does massffect the
reflectionprobability?
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Vibrational/Rotational Spectroscopy of Diatomic
Molecules

This chaptefocuses on applying tHeindamentals of quantum mechanics
developed in tb previous chapters tinterpreting thevibrational and
rotational transitions that occumithin diatomic molecules in infrared
spectroscopy. Analysis of amfrared spectrum ofa diatomic molecule
results in structuralinformation about the molecule and trenergy
differences between thmolecule’s vibrational antbtationaleigenstates.

6.1 FUNDAMENTALS OF SPECTROSCOPY

Molecular spectroscopy is a meawfgrobing moleculesand mostften
involves the absorption oElectromagnetic radiation.  Thabsorbed
electromagneticradiation results in transitionbetween eigenstates of a
molecule. The type dfigenstates involveth a transitiondepends on the
energy of theradiation absorbed. Figuré1l showsan electromagnetic
spectrum along with the relativenergies, wavelengths, aricequencies
associated with each type of rada. Absorbedultraviolet andvisible
radiation gearally results in transitionamongst electronic eigenstates.
Absorbedinfrared radiation results in changes in vibratibrad rotational
eigenstates. Absorbed microwanagiation results irchanges irrotational
eigenstates. Thspecific wavelengths of radiation that afesorbed in each
region of the electromagnetic esgrum depend on the energjfference

113
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between theeigenstates of molecule. As an example, a diatomic molecule
with a “stiff” bond will absorb at ahigher energy photon (shorter
wavelength) than reotherdiatomic mdecule with aless“stiff” bond. The
absorbedradiation in a spectrunprovides information on the energy
differencesamongstvarious eigenstates of a molecule; howevedp#s not
provide any informatiommn the actuakigenstategvolved in thetransitions.
Quantummechanics is needed in order to analyze a spectrum in terms of
assigning arabsorption in a spectrum tospecific transition in eigenstates
of a molecule.

The energy of aphoton of electromagnetigadiation is inversely
proportional to its wavelength,

E o = e (611
A

wavelengih >

e frguesnnc y

ErETiEy
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Figure -1 The followmg electrormagnetsc spectrum indicates the regions commaonly
used for ultravsoletvigible end mifrand ahsarplion spectroscopy.
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The h in Equation 6-1 is Planck’s constant and c isspeed ofight. The
wavelength of thephoton absorbed in thanfrared region is recorded in
micrometers (micronggm ) or iterms of wavenumberd ., m cm ') In
microwaveSpectroscopy, thepectrum is recorded in terms of finequency,
v, of the radiation. Thérequency of theadiation isdeterminedas follows:

B -, (6]

and has the units §f or Hertz, HZhe energy ahe photonis determined
by multiplying the frequency bi?lanck’s constant, h.
E =l -1}

rECiA

The energy of th@hoton absorbes equal to the energyifferencebetween
the eigenstatesf a molecule.
AL = 'E.'-'u-u-r. (6]

harclaia

6.2 RIGID ROTOR HARMONIC OSCILLATOR
APPROXIMATION (RRHO)

Consider the vibration andbtation ofa diatomicmolecule. Since the
molecule is rotating in spacéhe Hamiltonian is besiritten in terms of
sphericalcoordinates. The potential V(depends only on the separation of
the atoms, and developsfrom theelectrons and thehemicalbonding that
occurs between the atoms. Thehi®edingerequation for a rotating and
vibratingdiatomicmolecule is

Hir 8. ¢hind g) = Ewind )

-

-;.'-_ Viwln e+ Vit i g, @ = Ew(r. g 8). [4=5)
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The termp in Equation 6-5 represeit® reduced massf the molecule.
The V? operator in spherical coordinatesgigen in Equation3-11 and is
substituted into Equatio®5.

1 o1 i z .
_¥ '5':_’11!”] A eV - Ew (66
Ly g B 218

Recallthat theoperatorA® (thdegendrian) ionly in terms of the angular
coordinates(see Equation 3-12). As a resulthe differentid equationis
separable in terms tfie radialand angular parts. The wauettion must
then be a product aih angulafunction, Y,, and aadialfunction, R.

wir. 8.4 =1, R (6-7)

Because theadial and angulgparts areseparable and the molecule rotates
freely in space, theangularpart ofEquation 6-6 is identical to the Particle-
on-a-Sphere motigroblem developed inSection 3.2. Hence, the angular
functionsYy, are the spherical harmoni¢Equation3-19). Thesolution of
the A’ operator applied 6, ksown and giverin Equation3-20.

2 F
zin-‘ #}fhﬂz%ﬁhk [6-5)

The result of Equation 6-8 can babstituted into Equatio®6 resulting in a
differential equation in terms of the coordinate r only.

Pa e ¥R :
i [5 i’__wm?]ﬂ Mty ReW(nT R =EY R (69}

T Er.' 2'“'1

Dividing Equation 6-9 byY,, results in the two-body radial Schroedinger
equation.

HEE A !
| B PV R iR =ER  (5.10)
T AN 2’
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This further demonstrates that thengular and radial components of the
Schroedinger equaticare separable.

It is important to na that though the anguland radialcoordinates are
separable, theadial function associated with theibrationalmotion between
the particles islso @sociated with thangular momentum of the molecule.
Equation 6-10 represents an infingeries oflifferential equations for all of
the possible values df(such ad = 0, 1, 2, 3, ...). The radialfunction R
obtained from solvingequation6-10will be different for eactvalue ofl and
must contain that label.

It is convenient to express the radabordinate r in terms of a new
coordinate s thatepresents a change in thestance ofseparation of the
atoms in the diatomic molecule frosomefixed distancer.

s=sr-r, 6-11)
The fixed distancer, corresponds to the point of minimpotential (the
normal bond length); hence, wher r, ands = 0, thepotential isbetween
the two particles is at a minimum. It &so convenient todefine a new
function Sdefined in terms of the still undeterminteshction R.

)= S(r=r )= rRir} {6-12}

Equation 6-10 can now be wten in terms of thefunction S and the
displacement coordinate s.

W [a-’s“ R 1 ’:;‘| ] [a*
Fis e = | 2 613
5 bl e LS ) R I KR

Equation 6-13 can now bemultiplied by r resulting in thefollowing
expression:

A A el s

S Mis+r)S=E%, 6-14
2,::[135‘ {5+, ] Y { :
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In order to solveEquation 6-14, the pential must novbe specified. One
possibility is that the potential is harmonic.

Fia+hl-the? {6-13)
Equation 6-15 is substitutedto Equation 6-14.

MES s O

N s - 1heil = EX (f- L}
gl & (vrr

In the casehat! = 0, Equation6-16 is identical tahe Schroedingeequation
for the harmonicoscillator (seeEquation5-14). Forvalues ofl other than
zero, the potential for theystem ischanged by th@ngularmomentum of
the system.

1
F_..llril'rnur{."_ ‘ I"D:I - }.-'[5 | r.l}] P _L-'I‘I,!"_I'I

H 61T
2pls + 1,1

In order to solveEquation6-17 for anyalue ofl, the s dependence of the
effectivepotential isexpandednto apower series.

I I 2 &' 25 _
{suj:F__J'_-‘ T (6- 1%}
L1l n s o .r'"

The variousterms in the powerseries inEquation 6-18 represent the
interaction of rotationainomentum with vibration. Truncating theinfinite
series creates an expression for the effecterpial. The mostevere
truncation is taretain only thefirst term. Theeffective potentialbecomes
the vibrational potentigblus aconstanterm.
MR g} - ﬂff—u
2o,

Equation6-16 with the severe tuncation of Equatio®-18 becomes:
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TR . -ll{nll + ”.."IT |_'_ i"r{'i' ' Ff:__:l..':: = E5. I:ﬁ']g}

f

The constant operator term of teffective potential can be brought to the
right side ofEquation6-19 andcombined with E redting in E’.

WEAE :
“ynart Fix+r)5=F% {6-20)
gr= g BT (6217

Lpry

If the potential termV(s + ;) is that of the harmonic oscillator, the energy
term E’ is a sum ofthe harmonic oscillator and Particle-on-a-Sphere
eigenvalues.

RAGS +1)

ey

E, —i{v+ i {8-22)

Using the designatiod rather thanl describesmolecularrotation, and the
degeneraten;, states are designatedas rdhdt in Equatiort-22 is
called therigid rotor harmonic oscillator (RRHO) approximatiorfor a
diatomic molecule.

Equation 6-22 can befurther simplified by introducing avibrational
constantme, and ebtationalconstantB,.

Fifwacland’ Conklart: Gy, = fau (5-23)
at

Raratiena! Constand; &, - — {6-24)
3

Substitution ofEquations6-23 and 6-24 intd=quation6-22 results in the
following expression for therotational/vibrationalenergy of a diatomic
molecule at th&RRHO approximation:
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Eyo= v b gl « SIS v 1HE,. {6-25]

Interpreting aninfrared spectrum of a diatomimolecule carassess the
validity of the RRHO approximation. A-ouriertransform infraredFTIR)
spectrum ohydrogenchloride (‘H**Cl) is shown in Figuré-2. Itwill be
proven later irthis section thatvhen a diatomienoleculeabsorbs a photon
of infrared radiation, the molecule willgenerally undergo avibrational
transition of one eigenstai@ — v + 1). In addition to thechange in
vibrationalstate, theotationalstate of thediatomic molecule will change by
increasing odecreasing by ond —» J + 1) based gpectroscopic selection
rules to be discussed in Section 6.7. The absorption imes infrared
spectrum correspond to particular initial v, J eigenstate to dinal v’, J’
eigenstate as a resulttbé absorption of a photon.

'.!I"Ep.h:un = lE'r'.l" - 'E\'..'

For the case that J increases by Ghe J + 1) vand increases by Bre
+1):

ﬁ'EI.l_r—i-'h--I.lll-l = [{I"I + I' +J-_-]&‘|l} + {"'r + !]':'\-"r - ] + !IIHD]lr.“ﬂ
< [v 4 by - J0F = 118, ]

FEUC-Y

AL s =+ B (BS+ 2] (e 26

For the cas¢hat Jdecreases by o =J-1) amd increases by(grev
+1):

AE, ¢ our s m[(v+1 +lzf|m,., + (S =S =1+ 1)8, ] g
—[{r i %:In'.l.l,:I =S+ ]} B

1] J;lu.m
II:i"Er..l—n-n.-q-"___'_| = ey = ﬂnl_-r 5 [_ﬁ'lt-r

Equations-26 and 6-2Fepresent the predictiofier the absorptiofines for
an infrared spectrum of a diatomicmolecule based on the RRHO
approximation.
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Tabie & 1. The pltd.-l:l.l.‘lj pasitian, Ak, &nd separaln af peaks, MAE of a dhatoemic
rslecuabe in an infrared spectrum using te RRHO aparocivaion.

Hinitialy — I'{final} AE A[AE]

4 ] g, — Bl

2iily
] 2 aig = il

Ly
& | iy = 48y

28,
| 0 arg = 2B,

48,
0 | arg + 28,

28
| 2 ey + -J-.Iq,-l

4
2 1 wan - 6E,

28,
3 4 ary -+ Bty

2ty
& ! g+ 108,

The predicted spectral lines afdiatomic moleculeAE, and the distance
of separation between successiwgpectral lines, A(AE), for various
transitions in the rotationatate J can now baetermined. This isshown in
Table 6-1.

The RRHO approximatiorpredicts that the infraredspectrum of a
diatomic molecule will have a numbefpeaks allof equalseparatiorn(2B,)
except one larger gap 4B, between the set of peaks where J is increasin
by one (R-branch) and the set where J is decreasing by one (P-branch). A:
can beseen byFigure 6-2, the RRHO approximation predicts thizared
spectrum of a diatomic molecutemarkably well inspite of the harmonic
oscillator approximation fovibrational motion and theeveretruncation of
the power series iEquation6-18. Thedistinct gap between the P and R-
branches can belearly seen. However, notehat the distance akeparation
between thepeaks in thenfrared spectrum has some variation whereas the
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Figwre -2 An FTIR spectrum of Bydrogen chlarsde |:|-'|"lf_|'| al room temperaiure (298
Kl 15 shown The gemeral patten of pbsorption pesks 5 predicted by the RRHO
approcimaion; however, increasing deviaiion from the REHD approximalion oocurs 25 the
ekl J slate mcreases

RRHO approximation predicts it twe constant. Th&RHO approximation
does not take into accoutitat the rotational motion cannot be entirely
separated from theibrational motion of themolecule, and the vibrational
motion is notstrictly harmonicoscillations. Thiswill be taken into account
in the following sections byincluding additional terms in theseries
expansion of = (Equation 6-18) and by correcting for some
anharmonicity in thevibrational motion.

The intensity of the peakand theactual vibrationatransitions ¢ =0 —
v =1;0rv=1-= v =2, etc.)that areobserved in thespectrumdepends
primarily on the number omolecules in thenitial eigenstatebefore the
absorption oinfrared radiation. If the molecules thie system are in thermal
equilibrium at a temperature T, tHeaction of molecules, f;, in a given
quantumstateE,; is described by thdaxwell-Boltzmann distribution law
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The Maxwell-Boltzmanndistribution law issimply statedhere, but it is
developed and proven in a number of testsne ofwhich are listed in the

bibliographysection at the end of this chapter. Trection of moleculesf;,
in a given stat&; is

j=E (6-25)

The term k is the Boltaann constantapproximatelyl.3% = 12 T K" )gis
the molecular partition function and g; is the degeneracy of tHg
eigenstate. Thenolecular partitiorfunction is a sunover all thequantum
states foa moleculgi.e. aninfinite sum).

E-
y=FEe (6-25}
r

Since thefraction ofmolecules in areigenstateE; depends the average
thermal energy of enolecule, kT, and thground-state is the lowest possible
eigenstate, theground-state energy is taken as zerothe Maxwell-
Boltzmann distribution.

The fraction of molecules ineach vibrational state can now be
determined. Theenergyeigenstates for thbarmonic oscillator setting the
ground-stateenergy as zero is

F, wiv+ o - 1w = vy (v =412} (%-340)

Equation 6-30 can now besubstituted intoEquation 6-29 toobtain the
vibrationalmolecular partitiorfunction.

Sl

kT ] 'H

- TNT o
g4 = L& =k+a +
[ 3

(631

3
T+x+x" =1 +-

[Th

wiere 5 = o AT
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Equation6-3l isa geometric series favhich the solution is well known.

G =1+ x+a? +27 — = = - [6+32)

Equation6-32 can now be substitutédto Equation 6-28 resulting in an
expression for thefraction of molecules in a vibrationaktate v at a
temperature T.

o B ]
fo= e L-E*rJ {6-33)
il

Example 6-1

Problem: Determine the fraction H*ClI molecules in the ground-gtate
= 0) at room temperature (298 Kand the most probable vibrational
transitionobserved irFigure 6-2.

Solution: The vibrational constanip,,  foH»”Cl is given in Table 6-2
(found in Sction 6.6) as?989.7 cm’' {59485 x 1077 13 The vibrational
constant can also be estimatitdm the spectrum in Figuré-2. The
vibrational constant issubstituted intoEquation 6-33. Sincevibrational
states are non-degenerages 1.

Fiasho =™y "
. A 0T R
A =1 - & M = |
.

The result indicates that essentiallj0% of the'H**Cl molecules are in the
ground vibrationaktate. As aesult, the only vibrational transitighat will
be observed in aimfrared spectrum ofH>*Cl atoom temperature ig = 0
2> Vv =1,
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As can be seen iExample 6-1 fofH**Cl, most diatomic molecules are in
the ground vibrationaktate at roontemperature. Theenergy diference
between vibrationalevels of adiatomic molecule are skarge thatonly at
very high temperatures will there besanificantprobability that a diatomic
molecule will be in an excitedbrationalstate.

Point of Further Undersianding

Using the FTIR spectrum in Figure 6-2 and the RRHO approximation,
estimate the vibrational end ratational constants of 'H®CL Since the RRHO
spproximation fails to account for vibratton and rotation interaction that
becomes inereasimgly important at higher rotational states, which peaks are
best o use to obtain these constants? Based on the range of infrared
radiation generally used in an infrared spectrum (as shown Figure 6-1), why
is not possible 1o sce a vibrational transition over two cigenstates for "H*Cl7

Since digdomic molecules are all essentially in the ground vibrational
state at roontemperature, the flerence in the peakeights in thanfrared
spectrum is primarily due to thgopulations ofmolecules in thedifferent
rotational states J. Each rdtational state is degenerate due to ftie+ 1
possibleM; states. THeaction of moleules in agivenrotationalstate J is

. AlosenB,

_ {27 + Iy "

,I'I_.- (634

Ao

The relative heights of the peaks in anfrared spectrum ofa diatomic
molecule can be related to the ratio of tmaction of molecules in a
rotational state J,M; compared to thdraction ofmolecules in the ground
rotational state(J = 0, M, = 0).

i M-
-—;— —( e T ((-375)

o
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Fignire 5-3 A plot of the selanve population of a resational stace ! to the § = 0 siete
'H**Cl ax different temiperatures. The rofatioral constant, By, for "HCL is 10,59 ce”
(see Table 5-2p. The curves are @ plot of Equation 6-33 with | treated a5 a continwous
varisble.  The relative transition mtensites in an infrared specirum of 8 diatomic
miolecule can be relased no the relative populations of the roranenal staies,

A plot of thefunction inEquation6-35 for'H*Cl is shown irFigure 6-3.
At room temperature (298 K), the rotational stategh the highest
population are at =3. Thpeakswith the greatesintensity in aninfrared
spectrum forH*C1 will correspond to the changertationalstates of3 —
4 and3 —» 2. Thisis confirmed by the spectrum Figure 6-2. In addition,
as the temperature increastt®e number opeaks that willappear in the P
and R branches of thafrared spectrum increases, and the peakgreétest
intensity will correspond tancreasingly larger initial J ates.

The RRHO approximation and analysis of timdrared spectrum of
'H”C1 formulates apicture of the vibration-rotation energy levels of a
diatomicmolecule. Theenergydifferencebetween vibrationaénergylevels
is largewith respect to the rotational energy levels. A vibratistatev will

have annfinite manifold of Jrotational states. This is depicted in Figure 6-
4.
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I=1

F=0=

v=1{

Figure §-4  The wihmdioral-motational energy eigenstates for a dintemic molesuls
ure shown. The ground-state coaresponds toow =0, J = (L

Point of Further Understanding

The molecular partition function, q, indicates the number of cigenstates that
are accessible ot o temperature. The vibrationsl partstion function, g, for
'H™(C1 a1 298K is equal to one (see Example 6-1) indicatng that only the one
vibrational eigensiate, the pround-siate, 18 sccessible.  The rotabional
partition function, Q.. can be estimated by replacing the summation in
Equation §-19 with an integration. This approximation is justified sinee the
energy difference between the rotational eigenstates of 'H”Cl are close
together and many states are occupied (the energy difference between
rofatonal eigenstates gets smaller as J mereases). The rotational parition
funchion for a heteronuclear ditormic molecule with a small rotational
constant such as "HYCI is as follows:

Sl 40} _Bl(J+1) LT

5 .
Gu=288 7 =2 (2+De T =[@I+De ¥ dJ ==
F J &

o

The maolecular partition function is dimensionless; hence, the rotabional
constant must be converted into encrgy units.  Caleulate the rotational
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. partition function for 'H¥Cl at 298 K. Does your answer agree with the
number of accessible rotational siates J af this temperature predicted in
Figure 6-3 and the number observed in the infrared spectrum in Figure 6-27 |
Hire: Remember that the degeneracy of each rotational eigenstate is 2J + 1. |

6.3 VIBRATIONAL ANHARMONICITY

The realistic vibrationapotentials omolecules are notrgttly harmonic
oscillations. Theenergy differencesbetween vibrationalevels are not
uniform aspredicted by thenarmonic oscillator model problembut rather
continuouslydecrease anfibrm a continuunat sufficientlylarge vibrational
eigenstates. In addition, atholecules will dissociate if promoted to a
sufficiently high vibrationaleigenstate. Vibrationanharmonicityrefers to
thoseparts of thestretchingpotential that are not harmonic, atherwords,
the parts of the potential that do not vary as the square of the displacement.

An approximate approachor modeling the anharmonicity of the
stretching potential of a diatomic molecule is erse potential. The
Morse potential isconstructed such th&t. is tlepth of theminimum of
the curve (related to the dissociatienergy of thediatomic molecule) and
choosing gparametey thagields the correcshape of the potential curve.

Figi = 3 {l—e ") {5-36}

The coordinate s is theisplacement of théond from its equilibrium
positionr, asdefined inEquation 6-11. The qualitatii®rm of theMorse
potential isshown inFigure 6-5. Ats = 0, thepotential iszero. As s
approachesgnfinity, the value of thepotential approachesD. indicating
dissociation of the bond. As a result, Mersepotential has a finitaumber
of stategw = 0. | 2, 3 .. vn.) such thawhenv = v,,,, the bond is at the
highestpossiblevibrational statéoeforedissociation. Fos <0, representing
compression of the bond, tihdorse potentialrisesvery rapidly as in aeal
molecule. TheMorse potential can be&ompared to théarmonic oscillator
potential bywriting Equation6-36 in aninfinite power series iterms of s.

Fis} ﬂ;'{.l-’?-*? ERVLIL I 7%1'45‘ _l‘r‘:j'. . J [6-1T}
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Wis)

T T e e

Figuwre 6-5. The functional farm af the Morse polenbal | Equation =36 18 shown. Bond
dissoceiion oocuss ot Wim) = 0. For small values of 5 (bowest vibrational states) the
funchion is parabedic. Mote thal the polenbial moreases rapudly Frs < (L

The first termin Equation6-37 isharmonic and the subsequent thialrth,
and higher order terms avaryingdegrees odnharmonicity.

In infrared spectroscopy dfatomic molecules, thevibrational motion is
generally limited to the first twaibrational stateof a diatomicmolecule
whereby the displacement of the bonaézr the minimum (i.esmall values
of s). As a result, it is reasonalds a first approximatioto confine the
anharmonicity to the third order termEduation6-37. The potential can be
represented by a third ordsolynomialsuch that the first term is tlgame as
in the harmoni®scillatormodel problem.

Visy=4ks® + g {£-39)
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Perturbation theory can nowe used to determine the correction to the
energy eigenvalues for vibrationahotion. The first-orderperturbing
Hamiltonian is the cubic term Equationt-38.

FE sy - gt (630
The first-ordercorrection to the energy talculated by usig Equatiord-13.
EN =t g™ = 0

The first-order correction to thenergy for allstates is zero.The second-

order corrections to thenergy due to thegs® term arecomputedusing
Equatiord-18b.

T
oy | 'J-":-a‘|| J |:-:| |g.!- [[1}] '|| Illw:l::-

=21

1oy k] 1]
lE-I_l'l - I: - |I;F }
r Lu:l:l- - .E l:III EI:I'I'I l||:-I:I'|'I Ell'll _ Ell]_l

¢ L] - T J

Li1]d

The generalsolution to thesecond ordercorrection to the energy is as
follows:

E|2:| =_._F'IE!|F|E _EH:IE:

" TRNERRPIE v+ 4T [Gesdiba)

or

2 - sk -4k

As can be seen in Equation 6-40b, dfffect of theanharmonic terngs®  is
to lower the energy for eachibrational energy eigenstate relative to the
harmonicoscillator. This is shownin Figure 6-6 for'H*Cl. The energy

levels for an anharmonic oscillator become more closgigced with
increasingenergy.
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Figmre 60, Comparissen of the vibaratiors| enérgy eigensiates for "H*C comrgaied
usng the harmonic osctliztor approxumation gnd 1he Il:'.'.'l Lermm fham the Morse polenbial
{Equatros 6400} The value of 0, 15 4.80 &% obiamed from Table §-2.

The energy of aibrational eigenstate using the cubic termttoé Morse
potential toa second-ordeznergy correction is dsllows:

.E - El!r'l' +EI|I + Fl:”

Tt Forn \ §-d]
=[p+%]w}—j—[& —E m_':']h_.*_{_}-' ! ]
2R | H“_ ) e .|'_:|r ) :

For a change inibrational states ofv =0 — v’ =1 (as in a typicainfrared
spectrum of aliatomicmolecule), Equatios-41 becomes:

[
} Jory ap)
&E:E_—f:,:_:m&—ﬁ|ﬂ -

.

[6-42]

[
-

Equation 6-42 suggeststhat the dissociation energy,D,, of a diatomic
molecule canbe estimatedrom an infraredspectrum. Thedissociation

energy ofa diatomic moleculeD,, is fieed as the differenceetween the

depth of the potential well)., and theground-stateenergy E,.
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by=Dh - £, [6-43)

The Morse potential is only aapproximation toan actualmolecular
oscillation. A more accurate representation is obtained via a polynomial that
can be fitted to experimentdata.

E. =0+ T, + (1t _T}“m___;t-w +iv+ lz]“”:-.l'-; +oo- (fedd)

The termayy, is the first (equilibrium) anharmonicity constamg, is the
secondanharmonicity constant, and so on.

6.4 CENTRIFUGAL DISTORTION

The energyeigenvalueexpression for the vibration-rotation oflatomic
molecule can be improved laycluding more termgrom Equation6-18. If
one additionaterm is added, the approximatibecomes:

This makes theffectivepotential fromEquation6-17 asfollows:
FIis+ 1= Fin+n)+a+hs

_ E.ﬂ'pJ'[J L !}

o

where 2= A NS -1} and b=

If the vibrational potential is assumed to be harmonic etfective potential
becomes th&llowing quadratic polynomial:

i o=l v hsva. {G-43)

The two-bodyvibrating/rotatingSchroedingeequation becomes:
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R .
L2 e at iy, |- howe, = B 836
L .E_,'..I Fr )

One method for solvingquation6-46 is to us@erturbation theory. The
term in the brackets iRquation6-46 can beecognized athe Schroedinger
equation for the RRHO approximation (Equat®d9), andhe termbs can
be taken asa first-orderperturbation. The first-ordeand higher order
corrections to the energgigenvalues to thBRRHO approximatiorcan then
be computed usgPerturbatioTheory.

An easier approach to solvingequation 6-46 is recognize that the
effectivepotential inEquation 6-45 istill a quadratic equation resulting in a
parabola. Ascan beseen inFigure 6-7, the only difference between
parabola’sks’ and the parabola frohe effectivepotential inEquation6-45
is that the minimum potential is Honger ats = 0. Theninimum isshifted
by amoun®, and theminimum potential is noW,.

F..'ur{"ﬁ + r\.l.' = Fc

Since theminimum of a parabolic potentialf a harmonicoscillator is
shifted, theeffect is to add teach energeigenvalue. As a resulgach
energyeigenvalue has a terwy, added to it.

F v+ 4, e (Hh-47)

The wavefunctionsy, thasatisfy Equation6-47 are the same as for a
harmonic oscillator since th8chroedingeequation has theamefunctional
form. Since the value of, represents theninimum of V< ats = 8, the
value of§ isdetermined byaking the derivative of/*" (Equatio+45) and
setting the derivative equal to zero.

e

PH

-5t h
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Vo ket a s be

Figure 6-7 A plot of the functions ¥is) = %ks and V™ (5) = %ks' + a + bs are shown,
The difference between these two functions is that the minimum for V™ i5 ot 5= & asd the
value of its mimimuam s vy rather than zero

ES+ R =0

S ok AL (6-4E)

LIN

5o b MU
k

The value o/, is determindad substitutingequation 6-48 into Equation 6-
45.

'r—.b.': F_n B
‘[.-IJ =! .Ili'll'-T.-] F.IF h|._T.__|I= |!|k ‘; Fa
or
BLLI(S + 1T
p, =BT o ey (6-49)

2kr]

The energyeigenvalues are as follows:
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Ey o= v+ Lhin, + BodiS + L - D[ + 1 (650
where 0, =——. {6-51)

The energyeigenvalueexpression inEquation6-50 isthe same as for the
RRHO approximation (Equatiof-25) except for the last term. The tebm

is called thecentrifugal distortion constant. Notéhat it doedhave thesame

symbol as dissociatioanergy;however, its contexwill indicate whether it
represents dissociation energy or teatrifugaldistortion constant.

The physicalinterpretation otentrifugal distortion is that as a result of
the rotation of thediatomic molecule, théspring” representing the bond
between theatoms isstretched. This increases theffective equilibrium
bond length of themolecule lavering the energy of each eigenstate. The
effect ofcentrifugaldistortion increasewith increasingvalue of J.

6.5 VIBRATION-ROTATION COUPLING

Including an additional term can make farther improvement to the
truncationmade inEquation6-18.

L L B L (E-52)

The effectivepotentialbecomes a®llows:

L
5 bat

-
I.r:II' :[-"{.51.!}}!..{{.;'5}30 !——;—F_

i, 1] ty

{6-53)

-

If the original vibrational potential, ¥(s + r,), is taken to be harmonic, the
effective potential has thesameform as in Equation 6-4With a different
effectiveforce constant:

PR s+ = Lok + st -ty ra [6-547}
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where 0= M : (=550
F
The vibrationafrequencywill now depend on the rotationstate J.
v, = JH + 2 = \{i * ——-—-—-—-—lzﬁ':'"r[f sl 0-34]
P [x It

The effect of theadditionalterm 2c is to increase theffective vibrational
frequencym,, causing arincrease irenergy foreach eigenstate except for
whenJ = 0. Thiseffect is c#led vibration-rotation coupling.

Another more standardpproach is to treat thedditional term in the
effective potential as a perturbation. Perturbation theory vyields the
following vibration/rotationenergyeigenvalues:

Ey = v+ Thew, + 205 + 115,

{6-37]
- DS+ D e v + DT - )
RE:
where @, - . (6-58)
oy By

The third termis the centrifugatlistortion term, and #hconstant: is called
the vibration-rotation coupling constant. Note that thebration-rotation
coupling term involves both thebrational andotational quantunstatesv
and J.

6.6 SPECTROSOPIC CONSTANTS FROM
VIBRATIONAL SPECTRA

The vibrational/rotationaénergy states of diatomic molecule can now
be written to include nabnly the RRHO approximation batso in terms of
the correction factors including the first anharmonicity correction,
centrifugaldistortion, and vibration-rotatioooupling (Section 6.3 — 6.5).
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Figure 68 The contnbubon of the (sl anharmoniily, centrificgal distoron,
el rolatian-vibratan coupbng for "HCl vilrston/miation energy levels relative o
e energy wilucs companed Troem the Tigid rooor kamonic ssciliaior approximation
(RRHLY)  The nembers im0 pargrthesis correspond s the comrnbsiion of esch
cormectn term. The constants weee abiained from Teble 6-2

Epo= v e dpag + S+ D)« oy, e - 2)F

) (G310
o T R VIS (I SELN

The effectand the order of magnitude of each of the correctemms
relative to theRRHO approximation folH**C1 are showigure6-8.

The form of Equatior6-59 is stillonly an approximation; however, it can
be generalized byealizing that thelependence on is alwaysta#rms ofv
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+ % and the J dependence is alwaygeims off(J + 1). Equation 6-59 is a
truncation of the following general polynomial:

Eo= T Foodv+ 401+ 1) (6-641)

F=Okmil

The constants; thatre generated bihe expansion dEquation6-60 can
be assigned tthe variougphysicalconstants such dbefirst anharmonicity,
centrifugaldistortion, vibration-rotatiogoupling, and so on.

EI-;I' = O +'=I':.,]{|"'+IT}+'“.¢;.{|"'++:|! +':.i|l{|"‘+{"'-":l ""]
AR U b e e LI - 0 - a1}
+ e e+ s e

The values ofhe reportedoefficients inEquation6-61 will depend on the
level of truncation. Thecoefficients carbe readily correlated tepecific
spectroscopicconstants. Dueo convention,some of thespectroscopic
constantgorrespond to the negativetbé coefficient.

Ay, vibranonal comstant f¢,-)

B, rotational constant ()

LI Nest-anbamrsonci By comstanl { ok
(gl 2ecomd-anharinomciCy ConsIant (¢:..)
[ centrilugal distomion constant ()
(¢ 18 vibration-roaatian coupling {c,

Table 6-2 listsspectroscopiconstants for a number diatomic molecules.
The values are giveim wavenumbergem™) as this is a conveniemit for
infrared spectroscopy.
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Table 42 Spectroscopc constants for @ number of diatornic molecules are lised. The
values are obtained from Reference [1] in the bibliography secton at the end of this chapter.
The lerm [ refers 1o the dissociation energy of the molecule.

mselem ') Blem™t  mademl  adem’)  Do(eV)
YAI'H 168257 f. 3962 29.145 (1. VB <3106
TAC 48130 0.242 195 0.002 3l
g'H 2366 (58 111 49 0412 <3.51
YN 15146 L.666 2.3 0025 50
@Sy 18E5.44 1.7803 F1.708 0.0 648 LR
"B®F 13908 1518 ni 07 43
Yo pana 0.683% 511 0004645 4.2
"B™BEr 68431 0, 490 352 0,035 4.1
FC'H 28615 14.457 £id.3 05314 147
' 2o 7808 M7 0.212 1.52
il 3068.705 18006 15144 001738 4576
b e S b 1 ] | 19313 13461 001748 T
'SCRE 12850 0.8208 6.3 000624 7.8
o'W 1259 43778 195 i1, 0943 <17
Moato 650 0464 6.6 U006 59
'H*™F 413852 201939 SHL0GY LT = hd
H¥F 209825 11.007 45.71 0243 4 6.4
WM™l xumo.74 10,50 5105 03015 4.430
MO X0S0.78 545 5105 QM0 4,481
'Hiar 264567 R.473 45.1 (LE26 375
"H'F) 23095 h.551 39,73 0. 1R3 1056
M0 1004 170044 13.97 00178 5.29
Mo'H 373520 IB5TI B2.51 0,714 435
rH 23201 10,01 4.2 0.9 439
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6.7 TIME DEPENDENCE AND SELECTION RULES

Up to this point, thevavefunctionsconsidered do not evolve with time.
In some cases, thhamiltonian may havéime-dependent termsdicating
that the system changesith time. An important example is when
electromagneticadiationinteractswith a system. Electromagneticadiation
consists of electric and magnefields that oscillate irspace and time.
When electromagnetic radiation interacts with a molec(dach as in
spectroscopy), the oscillating fieldgll result ina time-dependent element
in the complete Hamiltonian for thmolecule. As alreadgbserved in the
case ofinfrared spectroscopythis interaction may result in a transition of
states.

If time, t, is avariable in aguantummechanicalkystem,then there must
be an operator associatedwith time. The operatotime, f, (just like
position) consists ahultiplicationby t.

i=t (6-62)

A Schroedingeequation is needeithat describes a quantumechanical
systemthat includes the variable time (th&me dependent Schroedinger
Equation, TDSB. As a result, thereust be aroperator such that when it
operates on avavefunction, ityields an energyeigenvalue. As can be

confirmed via a dimensional analysis, tldwing operator£ results in an
energy eigenvalue whaperated on aeigenfunction:

(F-fi3)

Postulate Il (see Section 2.2) can now be generalized for aygtem
including thevariable time ¥ is wavefunctiorthat includegime):

B = £ (6-B4a)

or

[G-0dtr)
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The wavefunction¥ in Equatio-64a and b is &unction oftime, and the
Hamiltonian may also havéme dependence. Based on the extension of
Postulate Il for theTDSE, thewavefunctions are eigenfunctions lofth
space andime.

The TDSE is ageneralization of theime independentSchroedinger
equation, TISE (the type of Schroedinger equation considered uphi®
point). TheTDSE does nothowever,invalidate the TISE.Rather, thelISE
is a case where thelamiltonian is independent of time. For a time
independenHamiltonian, thevavefunction¥ isseparable in terms of space
and time.

gt = prighdi) |6-65)

Equation6-65 camow be substituted into tHEDSE (Equation6-64b).

Avial = iwigy 22 (66}
Dividing bothsides ofEquation6-66 by yrip s yields
Hyigl | 199007 8 (66T

gig] ]

Since bothsides ofEquation6-67 depend on alifferent variable, the two
sides of the equation must equal to Haneenergy eigenvalue, E. This
results inthe following:

Hyig) = Evig) (6-65)
and
i @ = Egii). (669}

Equation6-68 is theTISE that has beensed in this text so far. The solution
to Equatiors-66 is



142 Chapter 6

1£"

$ir = (670}

Since ¢*Wg1) is equal toone, then ¥=%¥ = wergiufgip it dil =
e ghirgl. In the case of 8me independent Hailtonian, theunction ¢()
has no effect on thenergy or particleistribution, hence it is ignored in
time independensystems.

In systems where the Hamiltonian has tidependence (such as in the
absorption of electromagnetradiation), theseparation of thefDSE into
spatial and timedifferential equations is generally not possible or very
difficult. One approach to solvinghese problemss to treat thetime
dependence in thelamiltonian as gerturbation of the time independent
Hamiltonian (time-dependent perturbationheory). The Hamiltonian for
the systems separatethto a timedependent part], (the perturbation), and
a timeindependenpart,H,. TheTDSE is written a$ollows:

AL
A

(Fi, + D = (713

The wavefunctiond igaken as a lineasombination othe “unperturbed”
stationary stateravefunctions¥; (the product of thespatialwavefunctiony;
and Equatiorb-70.

D= 3 a BT

"F_ = ‘U"'_{' A |:I5--']-':I

The solution of Equation6-71 involves solving for all of theu(t)

coefficients. Equations6-72 and 6-73 canow be substituted intBquation
6-71.

£ : _|E! |:-.: il i

Eu,[r)e Mo, + Y Ha(e "y, =iRE v, —a,(tle ¥ (6-74)

i { o

Equation 6-74 can beimplified byrecognizing that
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1:10‘/’1 = Ey,

(the TISE) and that the derivativd the exponential on the rigkide of the
equation is equal to a constamd thesame exponential.

W 1Er iE !

Talthe * Egp, - T Hede ", = Ta e " Ew,

+ .'FEE F-"I 'Tl]: l:lr] P
cEe 1}
T At = WYy, H“é:” g 7 {6-75)

Since the“unperturbed™¥; wave functions ar@rthonormal,Equation6-75
can be further simplified by multiplying bostides of the equation B¥\*
and integrating over all spatiebordinates. The k caefer to anyindex.

aa, {1
ot

T, |4 g = T (P, |'®) (676}

The integral orthe right of Equatior6-76 isnon-zero (equal t@ne) only
whenk = i.

50, P a0 ) = ib "‘"‘5!{"3' 6.77]

The integral inEquation6-77 is solved foeach k index to obtain eaelyr)
coefficient.

In the caseof spectroscopywhat is of interests the momenat which a
photon(the perturbation) is absorbexhd whether iwvill result in a transition
in states in thenolecule(initial eigenstate i to &nal eigenstate k). As a
result, it issufficient toconcentrate oa shortime interval defined as= 0.
In this case, thenitial stated isonly one stationargtate.

ﬂ.....'.-.'pll:.i =01 =% and u"“mﬂ(_r - E'_I - 0
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Equation6-77 isthen reduced to thellowing expression:

o, 14, Woiar ) - m%. [6-T8)

The spectroscopic selectionles aredetermined by the integral on theft

side ofEquation6-78. When the integral igero, it is dorbidden transition
between the initial and k stationary eigenstates. When the integral is non-
zero, it is arallowed transition.

{"i‘li |ﬁf| '.-Pl'n'ﬁ'm} = [k Ifﬂfhlﬂdﬂﬂ “'a“-fl“iﬂ'n}l

SIS

m.n.'iul} w0 {allowed ransition)

In the case of iinared spectroscopy, &ransitionfrom aninitial v, J to a
final v’, J' vibrational androtational eigenstates is eitheforbidden or
allowed.

(b, o |F e Sy = 0 iforbudden ransinan)  £6-796)
¥ |H W= 0 allowed transiion)  {8-T9h)

The time depender{perturbing) Hamiltoniarconsists of the interaction of
the oscillating electridield of the impinging photonwith the dipole moment
of the moleculepn. The electriteld of aphoton oscillates at a frequency
OR.

H, = -/ »[E coslatg!)) o {6-B0)

The dot product of the dipole momaritthe moleculawith the electric field

of the photon arises because argytain orientations of the dipole moment
of the molecule with theslectric field of the photon result in &avorable
interaction. Consider adiatomic molecule with aipole in a constant
electric field (i.e.between two charged plates, one positively charged and
one negatively charged). When the positive end of the dipole is iwiline
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the negativeplate and thenegative end of thaipole is in line with the
positive plate (call this orientation 0°), the interaction isenergetically
favorable (negativeenergy). When thedipole of themolecule is oriented
exactly oppositewith the positiveend inline with the positive plate and the
negative end in line with theegativeplate (callthis orientation 180°), the
interaction energyis equal in magnitude as before but now itpissitive.
When the positive andnegativeends of the dipoleof the molecule lie
parallel to thepositive andnegative plates (orientatio®0°), theinteraction
energy is zero. Therientation of the moleculwith respect to itanolecular
axisvarieswith therotationalcoordinated. Since thedipole moment of the
molecule has @on-zerocomponent oyl along the molecularxas, the dot
product in Equatior6-80 varieswith the cosine 0®. The dipolemoment of
the molecule is also related tioe distance of separation between the atoms;
hence, the interactingamiltonian inEquation6-80 becomes:

.F:', - —tE1 cos{tr, 11} cos B 6%

The selectiorrules in infrared spémscopyarise from theintegrals of the
initial and finaleigenstatevavefunctions with the interacting Hamiltonian in
Equation6-81.

The wavefunction for garticular vibrational/rotational eigenstate is a
product of the radiand sphericaharmonic wavefunctions. The  J, and
the degenerat®l; quanturmumbersspecify thestate.

Wom, = i, ':"}1"'_-_.4._ 1,

Whether a specifidransition is allowed or forbidden is determined by
solving theintegral in Equatior6-79.

'::“"-u.u, |"'}.|'-”'-'.".'nr.'l:' (6471
= |fl costeor WS Le1¥,,, 8, i |uisrcos @ N, 1sF, L id. ﬂ]-':l
LR M, L :

The integral in EquatioB-82 can bdactored into two integrals, one over the
radial coordinate and thether over thengularcoordinates.
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oo i v -
F-L1.

= —|E| cosliro NE, (5] pita )] HL_.{.'.']::-I::]"_,,__.J LEr, {,i-]n| cos | ¥ooy 8. .;:lj:;u

The integral over theangularcoordinates can be evaluated fther a
specifictransitionfrom an initial J,M; eigenstate to final J’', M;” eigenstate
explicitly or, as in theequation below, for any transition by using the
recursion relationship for tHeegendrgpolynomials.

(Y 1861 | ces 8] ¥, 18, o))

\ < 5-Ed
IS FIEFYERE )

- r'?u_.”_.-Jﬁ.-.;-.. ﬁ 0 T

The &’s in Equation6-84 refer to theorthonormality integrals for the
wavefunctions as follows:

S, = Wu, @)wy, (91) =0 (AEM=MY)

=1 (EM=M"):

By, e =4:]"J.'-.', '1";'-'9}|?.-'.|.Ln E'q--liﬂ} =0 (Ifl=)+1)
=1 (IfI=I"+1};

and

Sy aa - '::f,u.rl, (o, 'i']'|]"'-' T {'1 lﬂ'::' -d (11 -1}
=1 [(frr=F I

As a result, the integral in Equati@83 isnon-zero (allowed transition) if
the quantunstate M, does not change and the J quantum state increases or
decreases by one.

In order tosolve theintegral over theradial coordinate, aunction is
needed todescribe how the dipole of themolecule varieswith the
displacement of thelistance separation of the atoms, s. One method is to
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represent the dipole as a poweriesexpansion from t equilibrium (at =
0) dipole moment afhe moleculey,.

!
-
of%

P
LLpf

MIEY =, 16-85]

=1 ) |:ir.'|:-

1=t

Equation6-85 isnow substituted intéhe radial integral. This integral can
be solved for any — v’ transition if thevibrational motion is assumed to be
harmonic and byitilizing the Hermite polynomial recursion relationship.

-::.'&'ll.ﬁ}lp'c.v]-l .':;I:_:-T.]:I = g

5 —
+ E I A I:\":il:'.r e FAVEL
a r-UH E\:.llin;' .
- \ [fh. 86}
- l—H — |[l'|-" - .I'r'r";l.-'
s |, o 24k

+ el = - e = e

Equation 6-86 must be analyzed termy term. Thed’s refer to the
orthonormality integrals of the harmonic oscillator wlavetions. The first
term is non-zero when the vibrational quam state does not change but
only when the molecule has a non-zeguilibriumdipole moment (such as
HC1 and HF). Thesecond term ison-zero either when the vibrational
guantumstate increases or decreases by one iffils¢ derivative of the
dipole moment of themolecule isnon-zero. The thirterm is non-zero when
the vibrational quantumstate increases or decreases by twihef second
derivative of the dipolemoment of themolecule isnon-zero. Further
expansion terms reveal thaty change iwibrational statesis allowed for a
vibrational transition for a moleculaith a non-zero equilibrium dipole
moment. Thevibrational transition observed in annfrared spectrummust
be determined using the Boltzmandistribution that was described
previously.

In summary, arallowed transition occurs with diatomicmolecule that
has a non-zero dipolmoment and the rotationatate changes by ofaJ =
* 1) and the degenerad; state doesamainge. The vibrationatate can
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change by anyalue; however, the frequencies the spectrometescan
dictate the actualibratioral transition.
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PROBLEMS AND EXERCISES

6.1) A molecule absorbs aphoton with a wavelength of 120.3 nm.
Determine the following: (a) thenergydifferencebetween the initial
and final quanturnrstates of thanoleculeinvolved in the transition;
and (b) the energyequired to causel.00 mole of molecules to
undergo thidransition.

6.2) Explicitly verify Equation 6-40a and 6-40b using second-order
perturbation theory.

6.3) Estimate the ground-state vibratiomalergy of H**CI using Equation
6-41 and thedata in Tablés-2. How doegshis compare to the ground
vibrationalenergy of’H**Cl obtained irthe samavay? What can you
conclude about theffect ofisotopicsubstitution ad bonding?

6.4) From thedata inTable6-2, determine theequilibriumbondlength for
12C'0. Estimate the equilibrium rotational constant'fg'*0.
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6.5) Sketch arinfraredspectrum ofH"’F aB00K and atl000K using the
harmonic oscillator andgid rotor approximations.

6.6) Correct the sketch &ove taking into account vibrational
anharmonicity centrifugaldistortion, and vibration-rotation coupling.

6.7) Make a plot of thevibrational energy levels ofH'’F irterms of the
harmonicoscillator and the Morse Potential iag-igure6-6.



Chapter 7

Vibrational and Rotational Spectroscopy of
Polyatomic M olecules

In the previous chaptevjbrational/rotational (i.einfrared) spectroscopy
of diatomic moleculesvas analyzed. Theameanalysis is howapplied to
polyatomic molecules. Polyatomiaolecules havenore than onebond
resulting in additional vibrationatlegrees of fredom. Rotation oflinear
polyatomic molecules is mechanically equivalent to that diitomic
molecules; however, the rotatiaf non-linearpolyatomic molecules results
in morethan onedegree ofotational freedom. The result of the additional
vibrational and rotationallegrees dfreedom forpolyatomicmolecules is to
complicate the vibrational/rotational spectra of polyatomic molecules
relative to spectra afiatomic molecules. Though the spedcrof polyatomic
molecules arenore complicated, manyf the samefeaturesexist as in the
spectra of diatomic molecules. Asresult, asimilar approach will be used
in this chapter. Thenechanics of a modslystemwill be solved, determine
the selectiomules, and théeatures of spectrunwill be predicted.

7.1 ROTATIONAL SPECTROSCOPY OF LINEAR
POLYATOMIC MOLECULES

The rotation of a lingapolyatomic molecule can be viewed as an
infinitesimally thin rodrotating about its one axis of rotationThis is
mechanically equivalent to the rotation afdiatomic moleule. Theonly

150
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difference is how thenoment of inertia is determinatbw that there are
more than two masses.

lr=':—'. XY

The term; refers to thalistance between the i andtpms, in thgolyatomic
molecule. The summation the numerator is betweerach pair of atoms
the molecule. Thesummation in the denominator is the sawer all of the
atoms inthe molecule.

Example 7-1
Problem: Calculate themoment ofinertia for 'HC'*N given that the

normal bond lengths of the H-C and GieN bonds(et€66 and 0.1156
nm respectively.

Solution: Equation 7-1 isexpanded forH"“C'N.  The values are then
substituted into theexpanded expression. The masseath atom is
determined in kg.

mr,, = lame =1 AL ba L amu — 1 48042107 Lp

M= 12amu ® LEANAND " kg f amee =1 6A0x107T kg

M. = Tdearre * 1 G60d L0 g o = | .ﬁﬁﬂi.rl'l.'l";'-kg
Since theatoms areviewed aspoint massesvith the mass concentrated in
the nuclei, the distanog,  equal to the surof the H-C andC=N normal

bond lengthsy,, =7 + 7.y -

M, m_r : +m . : +m r .=
Jr: L mHT ﬁ'mﬁ [y i,'m.'l' ™y ‘1.39‘37.!.'“:'_".:-'3-?!'::
My, W+,
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Due to the mechanicalgaivalence, theSchroedingeequation and the
resulting rotationalenergy eigenvalues is thesame forlinear polyatomic
molecules as fadiatomic moécules.

I

o7 Y, (A= E.T, (8.6)

-

}]1

_—— T"Il:l
X {

E. NS+, K

The only difference in thesolution for a linear polyatomic molecule
compared to that for a diatomic molecule is that the moment of inertia | is
given by Equatior/-1. The egenfunctionsY,, ~ are thgpherical harmonics.

The selectionrules for rotational transitions in linear polyatomic
molecules aralso thesame as fodiatomic molecules. The transitiddd is
equal tat1 in infraredpectroscopy and +1 purely rotationakpectroscopy
(i.e. microwavespectroscopy) but only if the molecltias a non-zero dipole
moment (see Section6.7). A rotational transition foH-C=C-Cl will be
observedvhereas foH-C=C-H naotational transitiowill be observed due
to its zerodipole moment.

The rotational transitions forlinear polyatomics in microwave
spectroscopywill be J =0 =+ ] = | J=1 = J#31 and so on. The
corresponding energy differences forotational transition of =0 —»>J =1

Tabde 7-f, The refaticnal constants and natural soundance of several isotopec forms
of the lmear modecule OCS obtained from the spectrum im Figare 7=1 are presented in
this table. Simce each absarption line, AE(MHEY , in the spectum comrespands taa 1= 0
—+ J = | tmangition, AE{MNz)=IZH., Dan obtamed from W.H. Flygere, Molecwar
Strictiere and Dhramics, Prentice-Hall, Mew lergey, 197TE.

_leotopic Species B(MHz) =~ Nawral Abundance, %
BotCs 6,061 .49 2400
By 6,061 .85 {00
) i 5 BELaT LS
b B 570483 {0200
b 1 5932 82 4,100
ONCTR 0,004 51 072

b g P 5911.73 .44
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Figuwre 7-!. A microwave specirum showing the relobve intensities of seme of the
naturally occurring isotopes of the linear molecule OCS oz abserved by the relative
intensities of the J = = | = | transiiions. The remtional consants derived for each
isaobopic form is listed in Table 7-1. Reprodwced with permission from W.H, Flygame,
Modeewler Structure and Dyaaniles, Prentice-Hall, Mew Jersey, 1970,

is 2B; for a rotational transition &= 1 — J =2 itis 4B; and so ojust as in
diatomic molecules.The energydifferencebetween rotational levels (2B,

4B, and so on) is equal to the energy of the absorbed microwave photon.
The value of B is inversely proportional to the moment of inertia, and the
moment of inertia is directly proportional bwnd lengths. As a result, the
energy of a rotational transition can be used to obtain the lengths of the
bonds inthe polyatomicmolecule as in thease of diatomiamolecules.
However, because there is more than one bond in a polyatomic molecule
one value for the rotational constant B is safficient to determine the
multiple bondengths in the molecule.
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A linear polyatomic molecule withh + 1 atoms has a total of N bond
lengths to bedetermined. In order to determine N bdedgths (in other
words N unknowns), a total &f equations are needed. TWesquations can
be obtained by measuring thetational constantdor N isotopically
substituted forms of the molecule. Thdtopically substitutesnolecules
will each havalifferentvalues for the rotationalastant B as a result of the
different masses of the atomsThe bond distances are assumed to be the
sameregardless of thésotopic substitutionsince thenumber of neutrons in
the nuclei bould notaffect thechemicalbonding. This assumption is only
valid for equilibrium structures of theolecule. Theincreased mass does
have a slightaffect on thezero-pointaveragevibrational bond length that
can be corrected for by a mometailed analysis. Because of this
assumption, the structubtained for thenolecule via isotopic substitution
is called thesubstitution structure to distinguish it from other methods of
structuraldetermination suchs crystallography.

The structure can be elucidatébm the rotational constants of the
various naturally occurringisotopic forms of themolecule. In thecase of a
linear moleculesuch as OCS for which the data is presented in Tabjehe
substitution structure can lmetermined by twalifferent itopic structures
(since there are two unknown bonigéngths to bedetermined,C=0 and
C=8).

Example 7-2
Problem: Using the datdrom Table 7-1, determine th substitution
structure ofOCS.

Solution: Since there are ortiywo bonds, only twaquations areeeded to
obtain the bond distances,  ang. The two equations are ftakarthe
two mostnaturally abundant isotopic forms{0'’C*?s  adty*:"5.  The
moment of inertia for each isotopform is determinedfrom its respective
rotational constant.

Il:.-!ﬂlic!!s}= - '!"

I mptey

=1 I7H0A} kg -t
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TN ) = LATdS0R0 kg - B

Using Equation 7-1, the moment inertia for each isotopiorm of OCS
becomes:

1 1 v
" LIPS, P R, ”En F. - M, HE.. F_.
‘rl::lrﬂl..lihl-!s-:l= [ g cd d ] L L

W-id A m"E | ."l'J“j

P 1 1
walen + T R fyy = ML L,

i wpfan = M R LD

Hrocs) = 2

T

Hpqmllc-rm:ls

Since the atoms amdewed as point-massest;: £ Fop + frs (See Example
7-1). Thisresults in the following two equations once timasses of the
atoms are substituted into the moment of inertia expressions.

OV TIEY = L3TOU0A0 Tk o = L9410 Mg -,
P 2ATHIID M kg rL 41 A1T0X10 g v r,

AOTORCTEY - 14145010 ke - = LT 2 R e,

— 25495107 k-l + LASTONI0 ke v, oy
The two equationgbove are solvedimultaneously resulting in thieond
distancesrcp andcs using the moments of indrien the isotopic forms
*0"C*8 and '0"C*S. A more thorough analysis would rivolve

averagingover the bondlistancesobtainedfrom all of theisotopic forms
given in Table 7-1.

Fea = 1349925107 m = 0.1 535982 nmm

Fop = LABISI21)” Yoo = 116835 3nm

The bond lengths ainy N + 1 size Inear polyatomic molecule can be
obtained via microwavespectroscopy given thepectra of Ndifferent
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isotopic forms of themolecule. The computationa@lomplexity increases
though withincreasing N.

7.2 ROTATIONAL SPECTROSCOPY OF NON-LINEAR
POLYATOMIC MOLECULES

Since amoleculerotates about its center of mass, it is convenient to
define thecoordinates for thaxes ofotation of amolecule about its center
of mass. Thdirst step is to determine thaenter ofmass of themolecule.
The point that theenter of mass of a moleculelegated isdefined as X, Y,

Z. The center of mass ofiolecule is determined #asllows:

Tein - Xi-0;  Smiy -Yi=0, Tz - Zy=0 (73]

whereN + 1 corresponds to the totalmber of nuclei irthe molecule. The
terms x;, y;, andz; correspond to the positionseathnuclei in anx,y,z
coordinatesystem.

Example 7-3
Problem: Determine the center of mass (X, Y, Z) of water. The bond angle
is 104.5° and thbond distance of ® is 0.0958 nm.

Solution: The structure of a water moleculshiswn in the ifjure below.

CemET af Fraks

X = 0.0E5 2 (i
' AR wien
¥, I =0 — — \
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The values for X,Y, and Z arsolved for byusing each relationship in
Equation7-3.

L] . -
Tmir -Xy=m (1, -t m ds,,, - Ardp - A=

My Ty ™ My + Wiy ={dmy, + o )Y

rn“{.n: +a

“a w-z|]+muxu

{ '"iu + mu}

Based on theoordinate systernsed in the diagram, thexygen atom is at

the origin; hencex, = 0.  Theosition of eacthydrogen atom igjiven
below.

| ' =054 nm

Ky 5 Loy = ﬂ.-ﬂ?ﬁﬁnm[tusi
a4

N4 5
2

e

Substituting theatomic masses into the expression forresults in the
position for the center @hass along the x-axis.

_ 2(1 GEO4AI07 L DOSE T M)

TN =&522l0 1nm
SRETx 8

The center of masalong they-axis isfound in asimilar manner. The center
of mass along the z-axis is zero sincerttwecule is on the x-y plane.

m [Sin0-52.25 ) + $in(52.247)]

[2m, *mg)

F= =1l

Note that thecenter oimass of a watemolecule is very close to the oxygen
atom due to its large mass relative to that of the hydragens. Thecenter
of mass is shown in tHegure forthis example.
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The coordinate system is how drawn such thabtign is at the center
of mass of the molecule. lorder to describéhe rotationaimotion of a non-
linear molecule, three angulaoordinates areeeded resulting in three
moments of inertia. Theposition of eachatom is now expressed in a
coordinatesystermwhereby the cent@&f mass of the molecule at the origin
and each atom is along the aXaiseled byconvention as a, b, and ¢. This
coordinate system isalled theprincipal inertial axis system. The three
moments of inertiahat result from the principal inertial axissystem are
called theprincipal moments of inertia.

f o= Enr,ib_" +c {T-4)
Jo=Em () 1) (7-5)
L= Fmial bt (7-6)

By convention, the axeme nameduch that, < I, < L.

Example 7-4
Problem: Determine thethree principal moments of inertia for a water
molecule.

Solution: The center ofmass of the molecul&as previousldetermined in
Example7-3. Thelocation of each atomelative to thecenter of mass is

determined afollows (see thdigure in Example7-3).

(- 10,095 Emprism( 52,25 ). 6009551 0os(32,25° ) - DHBS20)

1Ly
={ OOTEVerme 0 L1352 Liver A1)

H(2): (0.0751m,0.0521nm,0)

o: (0,~0.00658m,0)
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The principal momentsf inertiafollow directly from Equations 7-4hrough
7-6.
1, o=tm 02 em)t o+ (-DAES 2} = DLKIG] 2 ame - o
=100 “ kg om’

£, =2m, (OTE TRy = 001 Uiamw - am’ = 191010 e -’

I = 2m, [(0052 laem) + (075 Tnm) |+ m {0 D065 2nm)?
= 0,31 Fham - nm = 2,925 " kg om

Symmetry in thigproblem leads to the correct designation of the a, b, and c
axes. For non-symmetrical molecules, it is maifEicult to determine the
unique orientation that results in tberrectdesignation foi,, I,, anii.

For a linear moleculegne of therotationalaxeswill lie along the atomic
axis. By convention this idesignated as tha-axissincethis will make the
moment of inertia along thee-axis,], , equal tozero. Thevalues foib; and;
will equal to zero for all thetams sinceghey run along thea-axisonly. By
inspection oEquations 7-4 througi-6, thefollowing principal moments of
inertia for a lineamolecule will result.

linear molecules: I,=0; I, =1 (7-7)
Equation 7-7confirms theresults from Section 7-1 (aritom Chapter 6 for
diatomic molecules) that linearolecules haveloublydegenerate rotational
states designated as J afd There is a swigkonal constarfbr linear
molecules that is defined in tsame way as iBquation7-2.

If a non-linearmolecule hagprincipal momentf inertiathat are equal
and the third is non-zerthen it is asymmetric top molecule. There are two

types of symmetric top molecules:prolate symmetric topand oblate
symmetric top molecules.

prolatesymmetric top: I.=1,>1I, (7-8)
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oblate symmetric top: I1,=1,>1, (7-9)

A prolate symmetric topnolecule hasnost of its mass spreadong ahigh
symmetry axis. A prolate symmetric top can be envisioned to be similar to a
baseballbat. Examples of prolate symmetric tops inclu@#;F and
[(ILWsCH.  Additional exanples aregiven in Table 7-2. An oblate
symmetric top molecule hamost of its mass spread out ovaulane. An
oblate symmetric top cabe envisioned as discus. Examplesf oblate
symmetric topmoleculesinclude benzene andF;H. Additionakamples
are given in Table 7-3.

Another possibility is that a molecule has all three principal moments of
inertia being equal. In thisase, the molecule is callegpherical top.

spherical top: I, =1 =1, (7-10)

Examples ofpherical top molecules includetrahedraimolecules such as
CH, and octahedral molecules suclS&g

The most common cade when all ofthe threeprincipal moments of
inertia are not equalThis type ofmolecule is called aasymmetric top.

asymmetric top: fo=f =i, {7-11}

As can be seen by Exampk4, awater molecule is amxample of an
asymmetric top molecule.

Tahle 7-2. The principal moments of inertia m 107" kg-n” along with the rotatianal
constanis in MHz for a rumber of prolate symmeiric wop molecules (I, < Iy = L) are [sted
in the wble below. Dafa obtained from W.H. Flygare, Moleoular Strucieee and
Diyrgmaics, Prentice-Hall, Mew Ferpey, 1978,

I =1 A B
FCH; 5,300 32 k64 1583180 25534612
CICH 5310 3132 | 58,0205 1320295
BriCH, 5320k ET.708 157, 7248 LR A
HCH, 5.351 1LETE 1 56,8300 150131

CHC=0CH, 332 1,203 i 57,7318 B54584
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Tabls 7-3. The priccipal momente of ineia in 107 kg slong with the rotational
censtants in MHz for some oblate symmetrie lop molecules {1, = Iy < 1) are lsted in the
twhle below, Dats ohtsined from W.H. Flygare, Molecular Srructure aad Dymamies,
Prentrce-Hall, Mew Jersey, 197E.

=l L A } L L
HCF, Bi.043 149102 POL3E4 T4 562770
NFy TR B7.333 B0, B8 QAT
BrCH, IOT318 111627 VRS0 15100

A non-linearmolecule will have three orthogonal rotations along the a, b,
and c rotational axes. This resutighree rotationatonstants beindefined
as follows.

4= 12
ar, (7-12)
ﬁ:

F=— 11
3, (7-13)
|F.|:I

= 714
o (714}

Based on the conventidhatl, £ L. = L, therotational constantswill have
the followingordering: A > B > C. Theotationalconstants can be ordered
into a single dimensionless number call®hy’s asymmetry parametex.
The Ray’s asymmetry parametgralesasymmetric tp moleculesbetween
prolate and oblate limits.

IB-A4-C
Eommee B B
Y (713}
For a prolate symmetric tamolecule,B = C anck = -1. For aoblate
symmetric top moleculeA =B and= +1. All asymmetrictop molecules
will fall in between-1 < x <+1. For asymmetric molecules whete= -1,



162 Chapter 7

Table 7. The rotaticnsl constants in BMHz along with the Ray's ssymmetry
peramieter, &, for some near prolate mokecules (A = B = C} are shown. Data obdaimed from
W.H. Flygare, Molecular Strictwre end Dynamies, Prestice-Hall, Mew Jersey, 1978

A B C E
H

H
473533 465044 4,24179 -0.98

H

Hg

P p— TTE10.7 120550 fih4n6.2 A5

56635 2,570,654 1.767.54 A} 59

the molecule is termewear prolate For asymmetric molecules wherel,
the moleculeis termednear oblate  Some exmples of near prolate
molecules are listed in Table4. Theenergyeigenvalues for near prolate
and near oblate can be obtainBdm the solution to the Schroedinger
equation for prolateand oblatemolecules by trating thedifference as a
perturbation.

The Hamiltonian for the rotationahotion ofa non-linear polyatomic
molecule cannow be written. The rotationalmotion is free so the

Hamiltonian will haveonly kinetic energyoperators along the a, b, and c
rotationalaxes.

S Jab
H=" T-16
o, 2 L

[

Equation 7-16 cannow be rearranged to produce a term with ttotal
angular momentum.
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If a molecule is aspherical top(, = I, = 1), only the total angular
momentum term in Equatior+17 will remain.

j."
27,

M=

[7-18)

The Hamiltonian forspherical topmolecules is thesameform as forlinear
polyatomic molecules and diatomic molecules. €hergyeigenvalues are
the samdorm, and the microwave spectrdl also be similar.

For prolate(l, = I, > I,) and oblate(, = I, >I.) molecules, two of the
moments of inertia are thme canceling one terfrom the Hamiltonian in
Equation7-17. This results in twalifferent Hamiltonians, one for prolate
molecules and thether foroblate molecules.

i1 i\’ "|

frrwen _ 0 e L__lJ (3-19)
TR ETIETH

T & [ |

ey o) P 420
TR FTRRT

The form of the Hamiltonians in Equationsl9 and 7-20effectively
states that taking the squaretloé totalangular mmentum operator/
and a squaregomponentmomentum operator,}j oﬁj, applied to the
eigenfunctionyields the energyeigenvalues. The resultbtained will be
similar to the result obtained for thParticle-on-a-Sphergroblem in
Equations 3-26and 3-28. When the total squared angular momentum
operator is applietb thewavefunction, the result {groportional ta/(J + 1).
When theconjugatecomponent angular momentum operator is applied to
the wavefunction, the result is gmortional to aconstant timesanother
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guantum numbernamelyM, forthel:z operator (o)’ since theonjugate
component operator is squared in tbhase). The solution for thenergy
eigenvalues can barawn from this similar set of eigenequations from the
Particle-on-a-Sphere problem. Thaergy eigenvalues for the free rotation
of prolate andbblate molecules wildlepend on twa@uantum numbers)and

K.

X _"' ﬁ* .‘?:
e g p—+ K - 721
E { }:f: 2, sz] 1721}

H | N
E‘I"';"=J(Jrl]ﬁ P I ] 17-22}
- a5, L 2r 27,

Equations/-21 and 7-22 can be rewrittenterms ofthe rotationatonstants.

Eres NS+ NBy KA {7-13}
Fopb e N P Gl (. iF-24)

The eigenvalues neatldo completelyspecify therotational state of an
oblate or prolate molecule arefafiows (M, is dgenerate).

J=01,2,3,...
M,=-d—Fal-d+2 012 i
K- ody F -+ 2,002 S

An energy level diagram for an oblate top molecukh@wn inFigure 7-2.
The selectionmules for therotationalspectra oEymmetric topmolecules
are as follows. Note that tluegenerateotational quantum numb;, can

now change as a result of a transition.

AT £1; AK =0; AM , = #1
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Figure 7-2. A rotabonal energy level diagram for an oblale symmetnic top molecule
is shown., Each colamn represents a K manifold of retational J energy levels. Inoa
rotational spectrum, allowed ransitions occur within 2 particular K manifold becawse of
the selection rule AK =,

Rotational transitions in aspectrumwill follow along a particular K
manifold of rotational energy levels; howevesf a giventemperature a
system ofmolecules may occupyiorethan one K level. As can lseen in
Figure 7-2,since the vaous rotational states ingarticular K manifold are
close to rotational states in othent@nifolds, the rotationapectrum can be
expected to be very complicatadgth possibleabsorptionsverlappingeven
in highly resolved spectra.

Another important mode of rotatian polyatomic molecules imternal
modes of rotation. As an example, consider the rotation of a methyl group
about the C-C bond axis in ethane. Tbttion of the methyl group can be
approximated as a free rotabout thep anglas inthe Particle-on-a-Ring
model problen(see Section 3.1). Frothe moment of inertia of the methyl

group, the energy of the internal rotational states can be obtained from
Equation3-6.
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eclipsed staggered
2000 4 H.F F
E fem™)
. ;
| L

Bl o (=11] 120 1B
& (degress)

Figure 7-3. The barmiers to internal rotation for ethyl flucride are shown. The value for
Yy b5 1158 em’'. Data obiained from G, Sage and W, Klemperer, J Chew. Py, 39, 371
(1963)

. 1 L x N
E=m, E:mI {1horm )

If the methyl groups in ethariehave as fremtors, thetransitionsbetween
eigenstatesvould be inmultiples 0f10.6 cm™.

The free rotor model is not adequate for most molecules as there is in
generalsomepotential barrier to internal rotation. As an examptensider
ethyl fluoride. Ethyl fluoride, justlike ethane, has predominately three-
fold potential barrier ashown inFigure 7-3. Thepotential barrier can be
expressed as thellowing function.
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Figure 7-4, Internal rotation energy levels for a molecule vwith a barmer hindering
ratation of 100 em ™’ and E™ = m® (17 cm')  MNote that if the molecule i3 in the m; = 0or
1, the maleculs is dassically locked inlo a panticular configuration. Also nole thal he
my = 3 eigensiaies are no bonger degenerate.

800 -
E (em"} my=4 3
500
0 ; 44
o -3
+3
+2
100 -
*1
0
0 ; .
80 i &0 120 180 240 300

#§ (degrees)

Figure 7-J Intemal rotasion ensrgy lewels for o molecals with a barmier hindering
retation of 200 e and E™ = m® {17 em"),  Mote thas il the moleculs is in the m= 0,
1, of 22 the maleculs is elapsically lecked info s particular configuration. Also note that
this iy = £ e genstates are o longer degenerate
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v
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The termVs; is thedifference between themaxima andminima in the

potential barrier. The Hamiltonian for théternal rotation is given as
follows.

) F s o=
He-— s 2 -eos )= H' + 1 (T:16)

Equation 3-6 gives the zero-ordemergyeigenvalues. Using Perturbation
theory, the energgigenvalue for then; = 0 stateincluding asecond-order

correction summed up tey = 3  unperturbe@jenstates is given as
follows.

£oymt (2-27)

This analysis can be continued for othgr  eigenstates and witzeis/ed

is that the degeneracy is broken for s@tates. This is shown in Figure 7-4
and Figure 7-5 for theotational barriers,Vs, of 100 an@00 cm
respectively. As can bseen inboth figures, that ifa molecule is in a low
rotationalm, eigenstate, the molecule diassically lockednto a particular
configuration. Quantum mechanicallypwever, thanolecule may beble

to tunnel fromone configuration toanother depending on the height of the
barrier relative to the energy of the eigenstate for the particular
configuration.

7.3INFRARED SPECTROSCOPY OF POLYATOMIC
MOLECULES

The infrared spectra of polyatomicmolecules involve vibrational
transitionsalong with rotational transitiongust like in diatomic molecules.
However, especially in the cas# low-resolution spectraf polyatomic
molecules, th rotationalfine structure is lost. Theeaks in thanfrared
spectrum are assigned afuadamentalvibrational transition. Hence, the
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low-resolution spectrunmepresents a non-rotatimy rotationally averaged
model of thepolyatomic molecule. Thanalysis that is done in this section
assumes that theolecule is non-rotating and tifieequenciebtained in a
spectrum correspond tovibrational transition.

Vibrations in polyatomic molecules can be quite complicated. The
motion of a pair of nuclei many timesnnot be isolated from the motion of
other closelysurrounding nuclei in the moleculeFor this reason, the
characteristic absorptionf a particularfunctional group in a molecule is
assigned to a range ofiaracteristidrequencies where it can in general be
found in an infraredgpectrum (dew commonfunctional groups are shown
in Table 7-5). In order tanalyze the vibrations of a molecule, itislpful
to determine the number degrees of freedoravailable to vibration. A
molecule with N atoms has a totafl 3N degrees of freedonThree degrees
of freedom are in terms of transtaial motion. As discussed in the previous
two sections, there are 2 degreésotational freedom for linear molecules
and 3 degrees oftational freedom fonon-linearmolecules. Thideaves a
total of 3N - 5 degrees éfeedom folinear molecules and 3N - 6 degrees of
freedom fornon-linearmolecules that do not depend on the position or
orientation of the molecule in space. Tienaining 3N - 5 and 3N - 6
degrees of freedom correspond to th&ernal coordinates of a molecule
comprised of bond lengths amahgles. As an example, a gas phase water

Tahle 7-5. The charactenistic wikrational frequencies for some commaen funchional
groups are shoown, The range of the frequencies is a5 8 result of the dependence of what
i% bonded to these groups.

Bond Group Frequency {em’)
G Alkene | &R0 &K
Aramabc B and 1475
el Alkyne 22502 [k}
=] A ldehyde | T} | 2Lk
Ketome 17251705
Carbonylic Acid 1725 sk
Exter 17841 T30
C-N Amines [ 340 1000
C=N Irmines and Osximes LS [ oebld
C=M Miriles 22G0-2240
Mw=La Mimo (=ML 1550 and 1350
I

Fluondes 40 1 000
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Figure 76 The normal medes of viorarion for water are shown. (2} This comesponds
o @ symmetric siretch, @y = 365708 cm™, (b} This mode comesponds o a bend, oy =
1 594 T8 em™. () This mode pornesponds 1o an anfi=symemetric stretch, oy = 3, 75579 cmi |

molecule has a total of @egrees ofreedom: 3translational, 3 rotational
(since it is non-linear), an@ internal coordinates. Thilree internal
coordinates correspond to the two O-H bond lengths and the bond angle.

The vibrations of a molecule set up a potential calléoree field. The
force field is determined for a set of internal coordinates. Iffieee field is
completely known, then the vibrations of the molecule are knownforbe
field can beobtained from absorptions infrared spectra. Thsimplest
force field model is theharmonicoscillator, and this will be used in the
analysis here of thgure vibration of polyatomic molecules.

The Hamiltonian for darmonicpotential of gpolyatomic molecule can
be transformed fromatomic displacement coordinated the individual
nuclei to normal coordinates wherebyseparability of the harmonic
vibrations is achieved. Thaormal coordinates correspond to the actual
vibrationalmodesthat the molecule will undergo.

As an example of normaioordinates, consider th@rmal vibrational
modes of water ashown in Figure7-6. In eachvibrational mode it is
important that it noteflect eithertranslation or rotation dhe molecule in
space. Note that for thesymmetric stretch of water, the oxygen must also
move out in the oppositdirection ofthe hydrogeratomsthough its motion
is much less duedts greatermass orelse this mod would represent
translation of the entirenolecule inspace. In théendingmode, again an
arrow is needed for the movement of the oxygen or else this mode will
represent rotation or negtanslation ofthe molecule.
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Flgwre 7-7 The normal modes of vibration for carbon diowide are shown. (&) This
corresponds to a symmetric streteh, oy = 1388 e, (B) This mode commesponds 1o an anti-
symmeine stretch, wy = 2282 em' . () This degenerats made comesponds to & bend, m, =
667 em’', The other mode has the nuslei oscillaing imta and out of the plane of this page

As anotherexample, the modes efbration can beanalyzed forcarbon
dioxide, shown inFigure 7-7. Carbondioxide is alinear moleculewith a
total of 9 degree of freedom. There are 3 degrees d&feedom for
translation, andsince it islinear, there are Potationaldegrees ofreedom.
This leaves a total of 4 vibrational modes. The independent vibrational
modes consist of symmetrignd anti-symmetric stretches alomgth two
degeneratbending modes, one in plaaad the other out gflane.

The position of the nuclei written as a setg,.g,....q,,..4 for linear
molecules and{g..q.. ...q,, . for non-linear molecules thaorrespond to
the particular normal modes of vibration. Each vibrational meitiehave
an effectivemassm, aneffectiveforce constantk,, The Hamiltonian for
the harmonic vibration opolyatomic linear and non-linear molecules is
given adollows.

1

El-we} (7-2%a}

£ =1

“r g - s ' r
H =t L lg’ v wol {7-25k)

Each vibrational mode representég “i” is separableresulting in
multiple vibrationalShroedingeequations mathematically equivalent to that
for a diatomicmolecule. Theeigenfunctions and theibrational energy
eigenvalues will have theameform as for adiatomicmolecule.
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. =%+ the {7-2%)
£ = Fle e, {7-20)

The values of; are 0, 1, 3,..., and theground-state vibrationanergy will
correspond to when ali; ‘s are equal to zero. As an example, the harmonic
vibrational energy for awater molecule isspecified bythree quantum
numbers. Thegroundvibrational state for water is (00, 0). An excited
vibrational state forwater will correspond to one anorevibrational modes
at somevalueabove zero such as (0, 1, 0) or (1, 1, 2) andsb.f Some of
the low-lying harmoniovibrational levels fomwater areshown in Figurer-8.
Note that as the vibrational energpgreases, theumber ofvibrational states
in somesmall increment of energncreases. Thaumber ofstateswithin a
small increment of energy is called tlensity of states The density of
vibrational states fopolyatomic molecules increasesth increasing energy.

The selectiomules for vibrational transitions of polyatomic molecules are
the same as fadiatomic molecules.The selectionule resultsfor diatomic
molecules can be applied to tm@monicmodel forvibrations of polyatomic
molecules because treeparation ofariables achieved ithe resultstates
that each normal mode for vibration is regardedas a 1-dimensional
oscillator. For theharmonic model, it wagound that the quantum number
changes by one. Also the dipalgoment of the moleculenust also change
in the course of théransition in order for ito be an allowed transition. A
molecule such a$), does not havean allowedfundamental infrared
transition whereas H@oes.

In order to determine whether particular vibrationalmode of a
polyatomic molecule will beactive in theinfrared, themolecule’s dipole
must beassessed to seeitifchanges in @aormal mode vibration. Classically
the dipole moment of a molecule is determinetbfisws.

Mo =Lk, {7-30a)

ro=Tgx (T-10k)
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Figare 7-8 The kew-lying hammonic vibrations| energy levels for a gas phase waler
milecule are shown., Moo 1hal &8 the energy increases, the densily of S1a0es iNCHeases.

=54 {7-30¢)

The ¢; in Equations 7-30a-c refers to the charge of the i-tharticle.
Following a simple scheme andEquations 7-30a-c, a qualitative
determination of whether the dipole moment of a molecule is changing in the
course of absorption cdre made. First, all atoms are consideredtave a
partial charge, and atoms that aleemically equivalerdéire assumetb have
the samecharge. The displacement of the atoms in a normal mode of
vibration isthen considered to determine if thesea change in theipole
moment of the molecule.

As an exampleconsider carbordioxide where the normal modes of
vibration are shown in Figure 7-7. The oxygenatoms are more
electronegative than the carbatoms; hence, the oxygen atoms are assigned
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a charge ofd. The carbon must then haveharge of-28 irorder for the
molecule to beneutral. Thecarbon atom is placed at the origin of the
coordinatesystem. Irthe symmetric stretch modseeFigure 7-7a), both of
the oxygenatoms oscillate in-line with thearbon atom. Anghange in the
dipole moment of the molecule that occurs as a result of one oxygen atom
oscillating is negated byhe oscillation of the other oxygen atom.
Consequently, theymmetric stretch afarbon dioxide will not result in a
change in the dipole moment of the molecule and is a forbidden transition in
infrared spectroscopy. In thesymmetric stretclisee Figure 7-7b), the
oxygen atoms are aflating counter to on@nother so the change in dipole
moment that each oxygen atom contribuiesnot negated. The dipole
moment of the molecule doehange in this vibrationahode and it results
in an allowed transition.

In the case ofliatomic molecules, thstrongest absorption peak in an
infraredspectrum isAv = 1 (v =0 — v = 1). Othertransitions argossible
due to anharmonicitgffects;however, theAv = 1 transitiois expected to
be the most dominant in thepectrum. For polyatomienolecules, the
selection rule for harmonic vibration&dansitions is alsa\v; = 1. This
means that one vibrational modmdergoes a transition while thaher
vibrational modes do not chang@thervibrationaltransitions may become
allowed due to anharmonicity; however,ist expected that the harmonic
selection rule ofAv; = 1 while Av for all the other modes as zewdl be the
strongest absorptionis the spectrum. These types of transitions, when it
originates from the ground-state, are cali@adamental transitions. When
Av =1 but does not originatérom the gound-state, it icalled ahot band.
WhenAv > 1, thesdransitions are calledvertone transitions. When more
than onevibrational modeundergoes #&ransition it is called @ombination
transition.

As an exampleconsider thepossiblevibrational transitiongor a sample
of low-density gasphase water (no hydrogen bonding) in affrared
spectrum. The vibrationajuantum numbers igepresented a&,, v,, vs)
where v; represents the symmetric stretgh, represents the asymmetri
stretch, andv; represents the bendimgode. Thefollowing list represents
somepossible transitions arttiere designation.

L0, 0 = (1,0, 0) Tundamemal
30— b, L, ) fundanmernal
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Figere 7-8.  An idealized mfrared spectrum of low-density gas phase water where
there is no hydrogen bonding. The heights of the bars reflect the relative intersities of the
unticipated tramsitions. The ground-state n each tramsition is sssumed to be in the grousd-
state (0, 0, {1}, and the stale listed shave the peak 1= the fmal stare

(0, 0, 0) = (0, 2,0) overlane
Cr, O 0 —(2, 0,0 hotband
(0, 0,0 —=(1,0,1) combination

An idealizedinfrared spectrum of water ishown inFigure 7-9. Note that
the fundamentatansitions are theost intense absorptioisthe spectrum.
Another type oftransitionthat may beobserved in amfrared spectrum is
one where the initial state is nottime ground vibrationadtate. Thigype of
peak in the infraredpectrum icalled ahot band Hot bands may appear in
a spectrum either very close or essentially on tomtloér fundamental
transition peaks. As agxample, the hdtand transition off, I, 3] =+ ¢1, 2,
0) is expected tdall in the sameregion as théundamentatransition of (0,
q, 1 — 0, I, 1. The presence ardentification of hotbands in an infrared
spectrum can be determined kgbtaining the spectrum at a higher
temperature. The peaks toénsitions involving excited initiaktates will
grow, helping tadiscern these peaks from thendamentatransitions.
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PROBLEMSAND EXERCISES

7.1) Based on the normal modes of vibration @b, shown in Figure 7-7,
determine which modes ardraredactive.

7.2) Based on thdollowing rotational constants for the linear molecule
NNO, determine the substitution structure of the molecule.

NI NI 12,561.7T MHz
P O 12.137.1 MHz
Py e 11,4591 MHz

7.3) How manynormal vibrational modes will the followingholecules
have? H,0,, C;H, (acetylene)C,H, (ethylenef;,H;Cl (ethylene
chloride),CsHs (benzenel;sHsCl (chlorobenzene)

7.4) The rotational constant f@0, was measured t@ #3937 cm "
Calculate the C®ond length.

7.5) Based on the rotational constants and the bond lengths for
formaldehyde(CH,0), determine the bond angle.

A =282 106 GHz B=38434 GH= £ =24.004 GHz
{-H: 3.107 nm =k 1127 nm

7.6) Classify thefollowing molecules as asymmetric top, symmetric top, or
spherical topCH,, TH:C1, CHCl:, C2H., benzeneSFs.

7.7) Using second-orderPerturbation Theory, confirm Equation 7-27
summing up tahem, = t5 rotational states.

7.8) Make a sketch like that in Figur@s4 and 7-5 otherotationallevels

for a molecule with amnternal degree abtation whereby; = 400

cem’.

7.9) Find the center of mass and moments of inertidHgfO  'Hgld0
assuming that the bondengths are thesame as for'H,'O.
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Atomic Structure and Spectra

In this chapter, the electronic structureatdmswill be analyzed. The
simplest atomthe hydrogen atomis an importantmodel problem for the
electronic structure cdtoms. Sadly, the hydrogen atonand other one-
electronsystems, is thé&ast model problem for whichn exactsolution of
the Schroedinger equation can hebtained. Heavier atoms, and
subsequently molecules in the next chapter, witjuire some degree of
approximation inorder to solve the Schroedingequation. The results of
the Schroedingeequation for a hydrogen atowill be used as a basis to
solve for the electronistructure of heavieatoms alongvith obtaining an
understanding of electrongpectra oatoms.

8.1 One-Electron Systems

The systemdescribed here is a two-bodystem (such as a hydrogen
atom or aHe" ion):a positively chargeducleus and aegatively charged
electron separated by a distance There is apotential between the two
bodies along theadial coordinate; however, thesystem is free teootate
about theangularcoordinates®® and. Mechanically this issimilar to the
vibration/rotation of aliatomicmolecule resulting in theameSchroedinger

equation in terms of the generakpression for thepotential V(r) (see
Section 6.2).

177
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The reduced masgy, in th&gy/stem is dterminedfrom the mass of an
electron,m,, and the atomic mass of thecleus,my. However, thanass of
a proton and neutron is much more massive than an electron (1836.5 and
1838.7 times more massive respectively); hence, the reduced mass for the
system can be taken astmass oén electron.

_ome,

m, (3-2]

M+ R,

Since the rdial and angulacomponents areeparable, thevavefunction
will be a product of the anguldunction and aradialfunction, R,(r). The
system is free to rotate aboutthe apd axes as in the Particle-on-a-Sphere

model problem; hence, thengular wavefunctions are thspherical
harmonics ), (8. &}

gl r @1 =Y_ (8 dIR,(r} (&3]

To no surprisesubstitution ofEquation 8-3 into Equation 8-Along with
operation oA’ ony.i#, {1 and subsequent cancellatiory Qf#, ¢} results
in the sane two-bodyradial Schroedingerequation as previously obtained
for the vibration/rotatiorof diatomic moleculesvith a generakxpression for

the potential V(r)(see Equatiot®-10).

L

dm r

ﬁ-‘{r.ﬁ'ﬁ_;‘l FANE+ 1)
grt  Zerr?

&, +Fi{ri, =EfR, {B-4}

s
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The potential V(r) along the radiaoordinate is Coulombic. The charge
of the nucleus is +Zavhere Z is the atomioumber and esi the elementary
chargefe = | 662177 x 14 '™C} The chargeofthe electron is equal to -e.

Vir)y - {£:5)
dme,r

The terme, isthe vacuunpermittivity constant which in Sunits isequal to
55419 2 10" 7P m?. Substitution ofEquation 8-5 into Equation 8-4
results in thefollowing radial Schroedinger equation for a one-electron
system.

LS [a’ar-ﬂ..}“'|+ﬁ’.rgh1}ﬂ &

im,r

R_=ELR, (&)

T 1 -
L dr ) I r drE ¢

In the case of thevibration/rotation of a diatomic molecule, tiig + 1)
term in the radialSchroedingeequation is approximated via a powsgries
expansion (see Equation 6-18). This approximation is sufficient for
vibration/rotation of diatomic moleculdsecause the distance of separation
of the two nuclei does not vary greatly betweetational states. In thease
of electronic states however, the separatifithe electron and theutleus
varies widely between states and a pos&tiesexpansion isnappropriate.
Fortunately, thesolution to Equation 8-6 is wellknown. There are an
infinite number ofsolutions for each value dfand each onesidesignated by
a quantum number n. Each state is calledagomic orbital (AO) The
quantunmumbers that distinguish tip@ssible stateis given adollows.

n=1,23, ..
1=0,1,2,3,..,n-1
m=-I-+1,.,1-1,1
Before describing the radidiunctionsR,(r), it isconvenient to change

the units. Interms of Slunits, theenergy eigenvalues obtained from the
solution ofEquation 8-6will be in Joules. Sl units are naonvenient for
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systems at thatomic ormolecularscale. Mostjuantumchemists report the
results otheir calculations iratomic units In atomic units, the unit of mass

is in terms of the mass of aglectron instead of k@.e. themassexpressed

as a dimensionlestctor of themass of thesystem tothat of anelectron:
wm,). The unit for angular momentum &sdimensionles&actor interms of

h rather tharkg m’ s'.  The radialoordinate is exessed as matio of the
distance ofeparatiorbetween the electron and nucleusthie Bohrradius,

ao. The Bohrradius is thedistance of separation between the proton and
electron in the ground-state af hydrogen atom obtained from classical
mechanicsiz; = 5.2%177 = L' m) Charge is expressed in terms of a
dimensionlesgatio of the charge q to that of the urdharge e with the
constantd4ne, included. The net result of atomic units is to make the
guantitiesh, m,, and the chargg(with the combined constants) equal to 1.
The Hamiltonian for a one-electrosystemwith an atomic number Z in
atomicunits is as follows.

H[r.ﬂ,#}:-%?’ _Z (37}

r

The radialSchroedingeequation for a oe-electrorsystem in gomic units is
reduced to the followingxpression.

{&-8}

ORI Kby o gy
2r ot "

irt r

The energy eigenvalues in atomic units obtairfesin the solution of
Equation 8-8 iexpressed ihartrees (h).

1 hartree = 27212 ¢V = 4.3599 x (0™ )

Another type of atomiwnit for energythat is occasionally used by chemists
to reporttheir computationalesults is irrydbergs.

1 rydherg = 43 hartree
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The radiafunctionsR,(r) thatatisfy Equation 8-8 areonstructedrom
the Leguerre polynomials. The Leguerregpolynomial of anorder k can be
generatedrom the following expression.

]
Ldzh=e Ed;{r‘r‘ ‘) (.90

The associatedleguerre polynomials can bgenerated from théollowing
expression.

L’.I:.i!':'=i-l'-.{=]' [B-11
dr

The normalized radidunctionsR,(r) interms of the Leguerrpolynomials
are expresseds follows.

Y- Ei' l'_I:|! —avd 0l }
R.(r} '|||'1r1[{n+'l}!]"e /L {&-11)

g

—_—r {atormic 1mis) (E-12)
H

Table 8-1lists the explicitform for anumber of radialfunctions inatomic
units.

The energy eigenvalues tmartrees for a one-electron systéatlowing
substitution ofhe radialfunctions intoEquation 8-8 are as follows.

F]

E_ harirees)=s = E— (B« 1}
In'

As can be seen bigquation 8-13, the enegrgigenvaluesiepend only on the
n quantum number. Note that themergy isnegative indicating that the
electron remains around the nucleus Wyoulombic attraction. For the
ground-state of hydrogd = 1), tlmergy is -%2 hartreer -1 rydberg. For
n = 2, the energy for hydrogen is -1/@artree. As the value of mcreases,
the energy of thesystemapproaches zero and the enedifferencebetween
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levels becomes smallereaching acontinuum of states. The limit that n
approaches iifity and the energy approachesero corresponds to
ionization. Theelectron at that points completely separated from the
nucleus. Since the energy dhe one-electron systenfepends only on the
guantum number n, the energgvels are degenerate. The degeneracy of
each level isi’.

Table 8-4. The normalized one-ebectron radial functions, B, in atomic uniis are shown
below where 2 is the stomie number and

2z
P =——F,
4]
n ! Hodr)
I 0 R.{r)=Zi2e*
2 (1] E‘nl:.r}u z-l [Ia '{;;.p"'
243

Zi i
! Hr':r:l =1_‘IE'F "

i 0 htri:%lﬁ-ﬁprp':ﬂ ad
I R iry= Z (dp— e
96
El
2 R ()= 1ot
lr) mﬂ"
7
4 0 R,,I:r:l-rﬁiﬁ-l—.'lﬁp*-lzp‘—p'}:"'
I n‘..t-"}" E; 12':|-I:|—||I.|||'.|:+|l'-"l:ll.".l
31;[5
2 i) = o (6" )
9645

IE
_:I_| 'E-u':r}-mj_jp,e.'l
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Settingthe followingintegralequal to on@ormalizes te wavefunctions.

0

11T i sin itk = (B-1d}
ap

It is usual to normalize the anguland radial parts separately. The radial
functionslisted in Table 8-1 are normalized along the r coordinate, and the
spherical harmoniwavefunctions irrable 3-1 are also normalized.

Example 8-1

Problem: Confirm thathen = 2, I = |, m, = -l {y;,..] wavefunction is
normalized.

Solution: The y,,; is constructefrom the radiafunctionR;, inTable 8-1
and theyY,., sphericdlarmonicfunction inTable 3-1.

r

-
| 1

'F:-a-a—'[ E-Jr_ Zrg ’(uhsmﬂ, "}

Substitution of thewavefunctioninto Equation8-14 results in the following
integral to be solved.

32' (3 e (Fomate | s
mhj[l e { jsn EHﬁJL | d.ﬁj

R E P
ap(imyl Z° A

The integral is equal to oronfirming that they,,., is normalized.
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The wavefunctions for a ondeetron system and the associated radial
functions can now bexamined in detail. Below is a list of tHest two n-
states of aone-electrorsystem.

The 1s funcban: n — 1, f =0, m, =1k w = K ¥, = —=™F

"

The radial tinction is shown in Figure 8-1, and theradial distribution
function (R) for this eigenstatés shown in Figure 8-2. Theadial
distribution peaks at = a,, th8ohrradius. The radial distribution of the
electron is notonfined toa limited spherearound thenucleus butather it
dies away smoothly dfarge values of r. Since/ = 0, the orbital angular
momentum of theelectron around th@&ucleus iszero. This defeats the
notion that the electrotorbits” aroundthe nucleus.

I5 (™

R

Figure 5-1, The radial funchons For the first two levels of hydrogen are shawm, The
By and Ba funcioans cormespand o 15 amd 25 orbatals respectively. The By radial function
cormeaponds o a Jp arbical
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Figure 8-1, The radial probability functions, r*R*, of a hydrogen stoe for the firss owo
energy levels are showamn. Mode that the probability functions desay o 2em0 & r approaches
infimity

Y]

The 25 functionin— &,/ —0.m, - 0; w,, = R, F, - z,-_-lfi o ©F
4y 5

The radial function isshown in Figure 8-1, and the radial distribution
function(r’R) forthis eigastate is shown in Figur8-2. Theradial function
has one node at=2a, representiagoint of zergorobability.

The 2p functions: n =2, /= |, m,~ [, 1.

. zi .
tor my = 1 p =y, = ——=— poostk
lﬂ. o [ ] 4&#
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This p-orbital is designated gs  because rcosd (seeexpression fop in
Equation8-12). The function hasmaximum value ad equal to 0° and 90°
(at® =90°, the function is in the x-y plane). THenction isnegative below
the x-y plane angbositive above the x-plane.

— Aninf@te
BT

farm, = +1: Ip =, =—-

1

£ .
FEinde e !

=W, =._‘
SN

for my=-1 2n

Spatially, the2p, an@p., functions are thesamesince

?J

W W, =—— e smt @
S H Rl H Elﬂ_ﬂ'ﬂ

for each function. The density of each function is equal to aéwag the z-
axis. Operation of the angular momentum operator along the z-axis,

i =

—_ =

A
o

results in equal bubpposite orbitaengular momentum oft and fa@p,,
and2p, respectively.This would indicate thathe electron iscirculating in
opposite directions about the-axis. Since thep, and 2p., states are
degenerate (assumirthat there is no external magnetic field), any linear
combination of the twdunctions can be usedThe two linearcombinations
that are mosbften usedare as follows.

| 223 o
ip, - -t 'ﬁ"!:-:l_-u — pe’" sinfoosg
W2 EAVE 2
J_ ]
! 1Z: :
1;‘. =_{';'I'r:|| +f|!-":...}= - o 5]][&5”':':#
..lrl o >
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Sincex = randcosg andy = rzinfzing, the wavefunctions aralong the x and
y-axes.

-] .
w23 [myrr 3

g, = "_2,2_ »snécos et -12-5. ET R
b LINE
- —

’ , L

ip, - Jllz.'_ reindsinge ' = “I—,-:_I'“-’ "
‘E'\'-’: S'ﬁ'n-

Example 8-2

Problem: Determine the average radipbsition, r, of theelectron in a 1s
orbital ofa hydrogen atom andHe”  ion.

Solution: Since theradial and angular parts ofthe wavefunction are
separable, only #radialfunction for a 1sorbital isneededRy,. This radial
function is obtained from Tabl8-1.

]

Ll
B fr=iire " '=Fi2e®

(Er\'].ﬁ

crm = (R, | .qm}=-tz"£r‘e"".-fr =¢E1hiﬁf‘ Il
The average radial position of the electron in a hydro¢ér 1) 1s orbital is
.53 (1.3 % 329177 pm = 79. pm}. For aHe' ion(Z = 2), the averageadial
distance is equal t0.75a,.  As expectadcreasing theharge of thenucleus
brings theelectron on average closer to thecleus.

The role of angular momentum ithe orbitals ofa one-electron system
can be analyzed by rewriting the rad@throedingeequation (Equation 8-
8) in terms of areffectivepotential ¥*(r).
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-,.,-urtr:l

] 5 i 15 m 25 n
a3y

Figwre #-3. The effective potential (Equatien £-15) for a bydrogen stom is
ghown for an (=0, [= 1, and [ = } orbital. Foe | = 0, there |3 no repulsive potential
and the stractive petestial continues 1o iscrease (more negative) @ small radial
distances, r. For [« (i, the repulsive potential dominases at small radial distances.

- — W -
e A T
ptgg= L2 (Rl 5)
r r

The first term of theeffective potential in Equation 8-15represents the
repulsive catrifugal potential energy whereas theecondterm is the
attractive Coulombic potentianergy. Wherd =90 (an s-orbitafyere is no
repulsive potentiaénergy,only attractiveCoulombic potential energy (see
Figure 8-3). Thisresults in a non-zerprobability of finding the electron at
the nucleus.This conclusion igeflected in theR,, radial functions that have
non-zero values at= 0 (see Figudl). Fororbitalswhere!l = 0, the
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repulsivecentrifugal potentialenergy isenough toovercome the attractive
Coulombic potential ashort distanceforbidding theelectron to bdound at
the nucleuqsee kgure 8-3). This isreflected in theradial functionswith
non-zerd values as they all have a node &0.

Since the rdial functions for theatomic orbitals decayto zero at large
values of r, it isconvenient to discuss tiehapes of therbitals interms of a
percentage of the totadlectron density. The probability of finding an
electron in a sphere ohdius R can be found bgolving thefollowing
integral.

Jaa A

Firds filw w . rldran &g [8-6)

a4an

An electron density foa limited region ofspace isthen determined by
selectingsomearbitrary value for P(r) such &0%. Thepicture for each
orbital is constructedrom such acomputationresulting in the familiar

pictures such as sphere for thes-orbitals and @umbbellshape for the p-
orbitals, and so on.

Example 8-3

Problem: What is the most probabfmint offinding anelectron in the2p,
(w210) orbital? What ighe probability ofinding anelectron within asphere
ofradius R centered on theicleus fothe2p, orbital?

Solution: The firstquestion is answered binding the maximum value of
Wi
:
_oat PR
B 41.'&? fLos
1

?_z H 1 ]
Way =g o0 £
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The maximum value ofy2, will occur athencos®® = 1. This occurs
when 6 is equal to 0 ana.  Taking tliest derivative withrespect to r (in
terms ofp ) and setting it equal to zero then determines the maximum of the
function.  The normalization constant has been cancelled from the

expression.
g
— E' =
:.l';.:rl['(j

2 o
et - et A p-2c r= 7 [ALTHie weLilt )

The most probable point dihding the electron in &p, orbital is atd =0 or
7 andr = (2/Z) in atomiaunits along the positive antkegativez-axis.

The secondjuestion isdetermined by solving the integral Equation 8-
16 for a2p, orbital.

PRy -E— HJ’:,.-J cos- G T v s OF g
-

Fln A
o A
=—_f—1;e{—zl—;£p'e'“dp]>{jms Hs:n&fﬂj-dlgdlﬁ}

L R T Py SR P RP P 4143!64-1]}[%}[2:5

“l-e

Sl e 11
Y ER|2_3_133+|J
T 6 2

WhenR = 2/Z, theprobability is afollows.
M a1-e{681)=0.08

This result indicateghat a significantprobability of the electron extends
beyond the most probable point along the radial coordinate.
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Point of Further Undersianding
From the standpoint of classical mechanics, the 1s orbital of & one-cleciron
syslem poses semewha! of o paradox. The angular momentum of the
electron is zero simce / = 0, az pointed out previously, This would mdicate
that the electron is aol “orbiting™ around the nucleus. In addibion, the radial
wavefunction B indicates that the there 15 a non-zero probability of the
electron being af the nucleus, Based on the prermises of quantum mechanics,
explain why the electron in & Is orbital does not simply collapse mito the
nucleus canceling the charges?

8.2 THE HELIUM ATOM

The helium atom consists of a systewith two electrons around a
nucleus. This model can be applied to artyo-electronsystemwith an
atomic number Z includingi’, Li*, and Be**. The Hamiltonian includes
kinetic energy operators for thevo electrons,the Coulombicrepulsion
potential between theelectrons, and &oulombic attractiorbetween each
electron and thaucleus. This is shownschematically in Figur&-4.

J}=-iv;‘-1—v§-£-£+L {317
2 2 nooh K,
- s = ;
\ r__-/

Flgure 8-4 A schematic of 4 two-clectroa systomi 5 showm.  Each electron has thres
coordinaies 1o specify their position, The term ry; is the distance of separation betaesn the
clectrons
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The ternm,, is the distance &éparation betwedhe two electrons.

The Schroedingeequation involves sixindependent variablesThree
coordinatesspecify each electron. Thewavefunction is exgssed as a
function ofthese six coordinates.

wo= iR E L ) {£-18)

The coordinater;; is irterms of the coordinates of each electron. In
Cartesian coordinates, it is givenfaows.

b, = "illl::":l - '!":}! +{J‘| _.}'.‘:I: _I::'EI - g }: {E-]ﬂ}

Ther,; term cannot beeparated intaoordinates for either electronaking
the Hamiltonian forthe two-electron systeinseparable. Irorder to solve
the Schroedingexquation, an approximatidgachnique is needed.

A natural choice oapproximationtechniques to use for thisystem is
perturbation theory. Thelamiltonian inEquation8-17 can bedivided into
the unperturbed Hamiltoniand © , consisting of the two hydrogen-like
Hamiltonians, and the first-order perturbing Hamiltonizfﬁ}), tuatsists
of the electron-electron repulsion tetvn,,.

H™ =H, + i, {5-20)
. 1., 2
H=--v-= 521
=Ry {8-21)
i, =_l?; _Z (B-2H)
=73 -

el (5-23)

In the unperturbedystem, the tweelectrons do not interaetith one
another. Thigmeans that thelectrons arendependent, and their motions
are separable.The unperturbed wavefunctiaonsists of groduct of two
hydrogen-likeeigenfunctions.
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The unperturbedvavefunctionin Equation8-24 can now be @plied to the
unperturbedHamiltonian in Equation 8-20. Thisyields the unperturbed
energy that consists of nothing motean a sum of twohydrogen-like
eigenvalues afund previously in Equatior8-13.

;}LEIWI:: _[j.;l' *Jr}:]‘!n”.{",.f-"..'ﬂ'.?!”'r{"_i'ﬂl’#-‘)
=|:.|E| +£:| w.(r“'ﬁn'ﬂﬁ :"||"r: ['r..""'g‘:'ﬂ!}

zof
by _ ga o
EV =g + b, = —2|

]
-

wli " =123 . (8-28)

|
+_:I .
L reo =135

1
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The ground-state fothe unperturbedsystem corresponds to when both
electrons are in the 1s state. Tungperturbedvavefunction inEquation 8-24
becomes the produdftwo hydroge 1s wavefunctions.

2
5 2°

] E -2
|||:||'" 7 ™ e —F fS -E'E}
la 'ull; 'I.|I.'T

The superscript on thés in Equation8-26 indicates thaboth electrons are
in the 1s state.The unperturbed ground-staaergy for a hium atom(Z =
2) is obtainedrom Equation 8-25.

E'% = — Y = dharerees = - |08 fe

The unperturbed ground-staemergy ofhelium is nowcompared to its
true energy. This willdetermine howlarge of anaffect theperturbation of
electron-electromepulsion has on theigenvalues of a two-electraystem.
The experimental value for thigrst ionization potential for helium i24.6
eV. The secondonization potential can & calculated directlyfrom the
energy of aone-electron system iBquation 8-13since this corresponds to a
He' ion. Thesecondionizationpotential is equal to artrees or 54.4 eV.
The trueground-state energy ofteelium atom isld & gV + {.54.4 gV} = .79
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eV. The unperturle ground-stateenergy of a helium atom is in error by
approximately38%. As expectedthe electron-electrorepulsion termi/r,,
has a significanaffect on theenergy ot two-electrorsystem.

The first-order correction to thground-stateenergy fora two-electron
system can be calculated using Equation 4-13.

'E|I” lenl Hlllwmlﬂl r:l":r' [E"I-II_:I‘

The volume elementdr; antt, are th@lumeelements foeachelectron.
Equation8-27 can bexpanded into theoflowing expression.

e =211

T

q e

- 1 :
[e ™ & —pTqun @ rl sin & dr. dr,d8 d & dg g8, (5-20)
1]

M

In order tosolve Equation8-28, anexpression foil/r;, is needed in terms of
the coordinates for each electron.

A convenient way of expressing/r, is in terms of the spherical
harmonics. The detailsf this expansion can b&und in H. Eyring, J.
Walter, and G. E. KimballQuantum ChemistryWiley, New York, 1944.

| = Ar rlx'l ot .
ey 3 o LAt Al RS
—= (2%}

1 I" L . ]
.E. ...i_' i [?ﬂ ' {g”'i';.]l}lllﬁ [gl .l#':}] n=r.

The orthonormality of thesphericalharmonics willresult in a significant
amount of cancellations in the expansion af;.

Equation8-29 is nowsubstitutednto Equation8-28. Thisresults in the
following integrals to besolved where. corresponds to the smaller, of and
r, andr. corresponds to the largerrof and
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K177 60, 4012 16,0, Nsind, a6 i (8-30)

p [Ilfrﬂ”{ﬂ1.¢r= AT (D, ¢, Nand, 40, 24,

Due to the orthonormalityf the spherical harmoniwavefunctions, the
integral in Equatior8-30 is significantly reduced. Taking thelimits onr,

andr, for when they are largéhan one another, the first-ordenergy
correction isdetermined by théollowing expression.

F4 .|' - Feo . w7
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Solution of Equation8-31 results in the followingfirst-order energy
correction for theground-state af two-electron system.

E Lhorireesy = + —Sbg {8-32)

The first-orderenergy correction for &elium atom isequal to +1.25
hartrees or +34.0 eV. The energy of the ground-state of a helium atom to a
first-order correction is now

F = EM e B = S108.5eF + MeF = —Td Bl

As mentionegreviously, theexperimentalalue for theground-state energy
of a helium atoms -79.0 eVmaking the computed lige to a first-order
correction in error by5.3%. Obtaining the first-order correction to the
ground-stateenergy hassignificantly improved the computational result;
however, the error is stillnacceptable.

To improve thecomputational resulta second-order energy correction is
needed. As can beeen byEquation 4-19,obtaining thesecond-order
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energy correction to the ground-state will involve mixing higsiates. The
same is true foobtaining thefirst-ordercorrection to thavavefunction (see
Equation4-17). Themixing of otherconfigurations ird the unperturbed
wavefunction iscalled configuration interaction The subsequerdgecond-
order energyorrection for the ground-state of a helium atom4s eV. A

third-orderenergycorrection for theground-state of a heliuratom further

improves theesult yielding +0.1 eV. e sum of thezero, first, seond, and
third orderenergy for theground-state of @elium atom is 79.0 eV in

excellent agreement withe experimentavalue.

When perturbation theory ispplied toobtaining theenergy of excited
states ofa two-electronsystem, theelectron-electrorrepulsionresults in a
loss of degeneracy bfgher states. The 2p orbitaise no longer degenerate
with the 2sorbitals, the 3drbitals are ndonger degenerateith the 3p or
3s orbitals, and so on. The lossd&generacy as a result of a perturbation is
not uncommon.

Another approach to solving the two-electron system is to use variation
theory. Part of theaffect of haing two (or more) electrons in the system is
that the electrons tend toshield the nulear chargefrom each other.
Variation theory can be used to determine the amount of shielding by using
two hydrogenwavefunctibns (1s)with an adjustableparameter as an
effectivenuclearcharge ¢.

e (4-33)

Since@; andp, are orthonormaj, is alsdhonormal. For the case of a
heliumatom, the value @ will presumably be less than two.

The Hamiltonian for the two-electron system can be arranged in a similar
fashion as to what waslone for the perturbation theorgpproach in
Equations3-20through8-23. The term Z remains the atormamber.

a a " .u'l-lLr:-:_ i
Mo, [Ho oy + [ e+ ——=- L2, [E-14}

12

Theo, andp, cannow be applied 16, aid, .
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Substituting Equation8-35 and 8-36 intoEquation 8-34 results in the
following expression.
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Equation8-37 is nowmultiplied by ¢,"¢,” and integrated over adipace.
This results in thefollowing expression due to ¢horthonormality ofp; and
Q2.

. . P | . |
E={s-EHe @, :ﬂrmzﬁf. +ig = K[, r—q-:'.u:',ﬂ'r._
' | ' (E-383
- [y —nmdi =g

The first two integrals in Equatior8-38 correspond to theaverage
Coulombic potentiaénergy of each electromith the nucleus.

| | .
{":-_z}."'ﬁ'. ity r_'ﬁ"ﬁ':df. ={':_- - E]I'Er."i':": J__'?':'l'i'?:“rf: =g _z'_-' [B-1%

The third integral in Equation 8-38 is the electron-electron repulsion
potential. This is thesame as thetegral that wasolved previously in the

perturbatiortheory methodseeEquations8-27 through8-32) except now Z
is replaced witlt.
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Equations8-39 and 8-40 can now bsubstitutedinto Equation 8-38
resulting in arenergy expression in terms of tadjustablgparametet.

A

E=¢5 -1ds+ = (541}
.}

Now that an energyxression has been obtained in terms of éffilective
nuclear chargé&, an optimal value fr must be determined by minimizing
the energy.

E:n_:;-z:ni
s E

5
o= 3_-. E-—d-l
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For a helium atonZ =2, so theffective nuclear charge is equal to 27/16.
Physically this meanthat theelectronsexperience a nuclear charge23¥16
rather than 2. If the optimizedalue off for heliumis substituted into the
Equation 8-41, the energy eigenvalue for the ground-state of heliuth8s
karrees = -77.5 eV which is inrelatively goodagreement with experiment.

The perturbation ah variational approach to solving for the energy of a
helium atom demonstrates that the hydrogesmwavefunctions are not a
good starting point fio solving the Schroedingeequation ofatoms with
multiple electrons. Thelectron-electromepulsionpotential has @rofound
affect on theenergy of a system wit multiple electrons, as it has been
determined for the case of theelium atom. The charge of theucleus
experienced by the electronsreduced as a result ehielding, and some of
the degeneracy of the orbitals is lost. A better set oftions as a basis set
for solving systemsvith multiple electronswill be discussed irSection 8.4.
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8.3 ELECTRON SPIN

The electrons in amtom also have amtrinsic angularmomentum in
addition to their orbitahngular momentum about timeicleus. This is called
the electron spinor sometimegust referred to aspin. Even an electron in
the /=0 orbitalthat haszero angular momentum will have an intrinsspin.
The intrinsicspin of the eleton is not a classicahechanicaleffect; hence,
it is not a correcpicture toview the electron spinning aboutne of its axes,
as theclassicalmechanicapicturewould indicate. The ternfspin” is more
of a name for thisphenomenorrather than an actual description of the
electron. Though the intrinsic spin of the electron igeal, there is no
example in the macroscopic world form a visual model. Thelectronspin
arises naturally when relativistic mechanics iscombined with quantum
mechanics.Sincethis text is onfined b quantummechanics, the concept of
electronspinmust be introduced as a hypothesis.

Since an electromas an intrinsicspin, there must be a corresponding
operator forthe overallintrinsic spinangularmomentum squared§®. Itis
expected thathe intrinsic spin eigenfuntions, Asy, are analogous to the
spatial spherical harmoniwavefunctions ¥,.i'# al. ThenperatorsS‘, and
S* will be the only operators fowhich the intrinsicspin functions are
eigenfunctiongust like ¥.ré # areonly eigafunctions of I andL,
operators.

Ei =S5 A,, (8-33)
5, =AML, (244}

Equation 8-43 is the analog of the edtian for overall orbital angular
momentum squared.

LY, =I + 1Y,

Equation8-44 is theanalog to the equation ifdhe z-component of orbital
angularmomentum.
LY

17

=mhY,,
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There are only two possible values for tidleand S quantunrnumbers for
a single electrorfsuch as in dydrogenatom): +%2 or -¥2. Theigenfunction
forthe M = +% eigenstate is givethe symbole and is called “spin up”. The
M = -% eigenstate igiven the symboB and is called “spin down”.

. .-'3'-\. . "'.?:'"

S0t Sra-L = {4-45)
'q.q.-'l 2.-'

S ax :||'f-'|" : _ 'ri‘r' .

§ra=wn 218 sﬁ-i;]ﬁ {8-4)

The complete designation for a hydrogen atwavefunctiorwill include the
intrinsic spin eigenstat@n,img o Wrimj-

The Pauli principle states that ndwo electrons in aratom or molecule
can occupy thesamespin-orbital. This meanthat for anatom, each spatial
orbital (e.g. 1=, =, ¥p;. 2py, 2.y, and so on) can havenly two electrons and
they must beof oppositespin. This adds dawo-fold degeneracy to each
spatial orbital for an atom or a molecule.

84 COMPLEX ATOMS

The Hamiltonian fo an atomwith N dectrons, ignoring nuclear motion,
can be written as follows.

3w -S2,.FF— {E-47)

The first term in theHamiltonian corresponds to the kinetic energy of each
electron, the second term is the Coulombic attraction of each electron to the
nucleuswith an atomic number Z, and the third term is the Coulombic
repulsion between each electron. Tihdexj > i in the summation prevents
terms such a#/r;.

The zeroth-ordewavefunction, as in thease for théheliumatom,will be
a product oN-one-electrorfunctions.
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The generaform of the functiond will be a radialfunction, R,,(r), times a
sphericalharmonicfunction, ¥uré&

F =K (rY_(F.@) (349}

One possibility as a basis s#tfunctions to be used fdris the hydrogen-
atom functions. Asseen in the case of helium dom, this is not a
particularly good start. The hydrogen-atevavefunctions do not account
for shielding and otheaffects of theinter-electronicrepulsion. A basis set
of functionsthat take this into account is a much be#erting point for the
calculation. J. CSlatercreatedsuch a basis set dfinctions known as the
Slater-type orbitals (STO)The functions hag the followinggeneral form.

b, =M e T UL g (%503

The ternms is the shielding constant and is a parametethat vaies with the
principal quantum number n. The terh is the radial normalization
constant. Theffectivenuclearchargeg, can be calculatém sandn* as
follows.

e

The Slater-type orbitalseplace the polynomial in r as in hydrogenlike
orbitals with a single power inneducing computationaffort. The values
for sandn* are determineémpirically by thefollowing procedure.

1. The electrons ofthe atom are put into thkkowing groups.

{1s}; {2s, 2p}; {3s, 3p}; {3d}; {4s, 4p}; {4d}; {4f}; {5s, 5p}; ...

2. There is naontribution toscreenings, from any electron within a
given group.
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3. In the 1s group, the contribution s 0.30. Forelectronsoutside
the 1s group, the contribution tis 0.35 for each electroim that
group.

4. For an electron in an s or @rbital, the contribution t@ is 0.85 for
each other electron when tpencipal quantum number n is otess
than for the orbitabeing written. Forstill lower levelsof n, the
contribution tosis 1.00.

5. For electrons in d antiorbitals, the contribution tcs is 1.00 for each
electron below the anfor which thewavefunction is beingyritten.

6. The value fom* is determined basedn the value for n afollows.

Example 8-4
Problem: Determine theSlater-type orbitalwavefunction and for an
electron in a) the ground-statetaflium, and b) th&p,, orbital of oxygen.

Solution:

a) For helium,Z =2. The only screeningfiom theother electrorso value
for s = 0.3. The value oh =1, so the value far* = 1.  Th®later-type
orbital wavefunction for &elium atom in te ground-state ias follows.

Wi = M0l

The effective nucleacharge isl.7, the sam&alue asobtainedpreviously
from variational theory irSection 8.2.

b) For oxygenZ = 8. For an electron in tRe,, orbital, n=2 and so* = 2.
The contributions téthe screeningonstant are summed a®llows.

2 electrons in thés orbital: 4083y = 1.7
5 electrons in 2s and 2p orbitals: 3{f1.35}= .73
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The total fors is 3.45. Thewavefunction for the2p,, orbital in oxygen has
the following form.

b, . =re :“':"'_I:_H.lil]

The effective nuclearcharge for an electron in &p,, orbital in oxygen is
2.28.

There are severatleficiencies in STO's. Because STO'seplace the
polynomial in r for asingle term, STO’s dmot have theproper number of
nodes and do not represent the inpart of anorbital well. Care must be
taken when usingTO’s because orbitals with théifferent values ofn but
the same values dfandm, are not orthogonal tone another. Another
deficiency is thahs orbitals whera > 1 have zermamplitude at th nucleus.
Valueshave been obtained for thedfective nuclear cirge for anumber of
atoms byfitting STO’s to numerically computed wavefunctionsThese

values are given Table 8-2 and supersedevtilaes obtainedempirically
from Slater'srules.

Twhde 8-2, The namerical values for the effective nuclear cherge Tor atons ma rumber of
neutral grownd-stale atoms are shown., Values were phtained from E Clemenn, D. L
Raimancy, 1806 Research Mote ME-27, 1963,

H He
Is 1 | 573
Ll Be B C M o F M
Ig 26 JG6E4E 46798 34727 G651 TO5TW Hasu] Gnsll
) 12792 L9120 L5762 12166 3.H74 44516 31270 37584
2p 14214 L1338 15340 44552 5 1M 37584
Ma Mg Al S F 5 L | Ar

15 [0.632%  11L60ES 125910 135754 145578 15.540% 1635219 175075
i5 ATI4 T A9 EXIA6 9.0 9ERIM  JDAZRE | 14304 122304
ip G.A018 TH258 RG34 99450  J0S61I JLATT0 1254312 14(0H2
3s 25074 13075 401172 49032 56418 f3e6Y  T.06R3 17568
Ip 4065 42E5X  JEEHd  S4x1% 6.106] 07641
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Solving the Schroedinger equation for an atom with N electrons is
formidable computational task because of the numeroustreteelectron
repulsion terms}/r;.  lrorder to calculate the electron repulsion of one
electron, thavavefunctions for thether electrons must be known and vice-
versa. The best atomic orbitals afgtained bya numerical solution of the
Schroedingeequation. Theorocedure firstintroduced by D.R. Hartree is
calledself-consistenfield (SCF). The procedure was furthenproved by
including electron exchange by Mrock and J.C. Slater. Therbitals
obtained by a combination tifeseprocedures are callédartree-Fock self-
consistent field orbitals.

The Hartree-Fock self-consistentield (HF-SCF)approach assumes that
any one electromoves in a potentiahat is asphericalaverage due to the
other electrons and the nucleus. Thpherically averagegotential for an
electron is expressed as a singlarge that is centered on thacleus and
varies with the positionr in the potentially averagedsphere. The
Schroedinger equation is themumerically solved forthat electron in the
spherically averagedootential. Of course inorder to determine the
spherically averagegotential for a particulaelectron, thewavefunctions
(and hence relative positions) of théher electrons muste known. Since
the wavefunctions of the other atoms is most likalyt known, the
calculationsbegin with approximatevavefunctions as &asis set for the
other electrons such &TO’s. Thewavefunction isassumed to be a product
of one-electronwavefunctions as in EquatioB-48. Theresult of this
assumption is that thelectrons in the atom are ordered in hydrogenlike
orbitals. As anexample, the electrons oxygen(Z = 8) are ordered in the
familiar fashion ofts*2s*p*. TheSchroedingerequation is thersolved for
the electron, anthen the procedure is repeated forrés of the electrons in
the atom. After this first computation, a set mhprovedwavefunctions as
the basis set for thelectrons is obtained. Tlemputation is now repeated
with this new setof wavefunctions foreach electron. A new set of
wavefunctions is obtained for eachelectron and is compared to
wavefunctions fromthe previous computational cycle. |If the values are
different, a new computational cycle is performed with the latest
wavefunctionobtained for theslectrons. If the wavanctions donot differ
significantly from the pr&ious computationalcycle, the computation is
complete and thezavefunctions arsaid to beself-consistent.
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The details o& HF-SCFcomputation can how bexamined indetail. In
the HF-SCFapproach, the Hamiltonian for an atom is writterterms of a
summation of hydrogenlike ternpdus the electron repulsion terms.

1

fa

H=EH.”r En (R-32}

|u|-—

The termH®" is called the core Hamiltoniaand represents the electrbn
in a potential thatonsists of only thewucleus ofatomic number Z with no
repulsive potentiafrom any other electron (asni a one-electron system).
The factor of % is @ eliminate counting th same electron-electron
repulsions twice. The prime is a reminder not to countidry terms.
The focus is now orelectron 1, and the rest tife electrons (2, 3, 4,.,
N) are regarded as being distributed abtmutform part of the spherically
averaged potential thaectron ltravels through. Theharge of a given
electron is smeared bunto a continuous charggensity,p, (the charge ofan
electron per unit volume) that electron 1 travels through. The potential of
electron 1 with another el&on, ¥, is obtained by summing tipgoduct of
the charge of electron 1 times arfinitesimal charge densitdg, times an
infinitesimalvolume elementdv,, divided by the distanceseparationz,;.

o= (353

The probabilitydensity of theelectrons is given af,s| As r@sult, the
charge density of an electron is given@s= —{s |

(el et 1 18-34)

The potential interaction of electron 1 with all N electrons are determined
and summed together.

'.r SI
F‘r':-rllﬁ'l"#I:I: I"l;.:l + rll + FH. -t F'-In-.' = .r_. |'_| 'ﬁh" ':3"5:":]
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At this point, the HF-SCF approachmakes anadditional assumption
beyond assuminghat the wavefunction is groduct of one-electron
wavefunctions. It issumed that the potential of alectron in an atom can
be made into afunction of r only. This is called thecentral-field
approximation The potentialV(r,, 6, ¢,) is averagedver® andd¢ so that it
is afunction ofr, only.

f; Fir @ g 1 uin & 0 ol
Fink=—r [i-36)
[ 5in S g
qo

The one-electron Schroedingequation forelectron 1 is now solved and
an improved wavefunctiog, for electron 1 is obtained.

llr}.lﬂ'-.- +F{r|}]‘t|{|'}=fl-t.l[r:l :.3'5?]

The energy eigenvalue, isnergy of electron 1 athis stage of the
approximation. The procedure is continued &l N electrons in theatom.
The wavefunctions foreach electron,y;, are compared tohe original
wavefunctions at the beginning of the calculation. If he  wavefunctions do
differ significantly,the computation is complete and SCF has lzdmneved.
If not, another computational cycle jerformed.

Once thefinal self-consistent fieldwavefunctions areobtained, the
Hartree-Foclkenergy can now bebtained. A temptingonclusionat this
point is to simply take a sum of thenergyeigenvaluesobtained foreach
electron:E = 5 + £; + £ + ... + £ This is would be an incorrect
assumption because thenergy eigenvalues were obtained byfirst
determining the potentialveragebetweereach electron. lwalculatinge;, it
is determinediy getting the electron-electraepulsion between electrons 1
and 2, 1 and 3, all the way to 1 and N. In calculatigw lectron
repulsion is determined between electrons 2 and 1, 2 and 3, all the way to 2
and N. As can be seethe eletron-electron repulsions amver counted if
the energy is determined merely by the sung;sf The repetitive electron-
electronrepulsions must be subtracted from the sum
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The HF-SCFatomic orbitals are not the best that can be obtained. The
approximation is rooted in ghorbital picture for thendividual electrons and
in central-field @proximation for tle potential. Theelectron densities
calculated fromHF-SCF arequite accurate, but thenergyeigenvalues are
too high. As an example, the HF-SCF ground-statergy for ahelium
atom is -77.9 eV compared to the experimeni@ue of-79.0 eV. In order
to improve thecalculated result, theseparation of the electromotions
approximation must be relaxed andr; musbe incorporated into the
wavefunctions. This is called thecorrelation problem and this is discussed
further in thenext chapter. For heaviexlements relativistic effects also
need to be includemhto the $hroedingerequation. Relativistieffects are
important in describingcertain properties oheavierelementssuch as the
color of gold, theliquid form of mercury, and the contraction of lanthanide.

8.5 SPIN-ORBIT INTERACTION

The electrons in an atom contaamgularmomentum(exceptwhen!/ =0)
and an intrinsic spinAccording to classicaélectromagnetitheory,when a
charge g moves ira circular path, amagneticfield is generatedthat is
associated with the magnetic dipole source. The magnetic dipole
momentz, from the charge flowing through a circular loop is proportional
to the current and tharea of thdoop. The direction of the magnetic dipole
moment is perpendicular to the plane of fbep. An electron in an orbit
aroundthe nucleus can be considered a negativeeharge of -eflowing
around a loop of somedius rgeneralizing the truerbital motion. The area
of the loop ismr’.  The current is tHeequency, that the electron passes
through aparticular point in thdoop (w/2n).

et et
.:4'=J'-"3"| ) |_=_arﬁ-.: (2.59)

s I
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The term ¢ in Equation 8-59 is tepeed ofight. The angular momentum of

a particle movingabout a circular loop is the particle’s mass times the square
of the radius of the loop times theequency mr’e. Thangular momentum

of an electron in arorbit is deéermined by theL? an(iz operators; hence,
Equation8-59 can beewritten asfollows for anelectron ina hydrogen
orbital.

o ol e

P oaf &I R0
2 ¢ zm.{ﬁ »+ L (&-80)

As can be seen byquation 8-60, the magnetic dipole moment is
proportional to the angular momentum of the electr@ince theangular
momentum of an electron will be in unib$#, it is convenient to collect the
constant term@ Equation8-60 anddefine a newconstant called thBohr
magneton us.

et
dte, ¢

by s 8-61)

Electronic magnetic dipole momentsrolecules and atomare measured
in terms of Bohr magnetons ife same wayhat angulaiTmomentum is
measured in terms a&f

The same analysis can now be démethe intrinsic spin of an electron.
The magnetic moment as a resaft the intrinsic spin will be directly
proportional to the angular momentunttaintrinsic spin, S .

g (B-62)

Im o

H=g,

The expression for theagneticdipole moment for thentrinsic spin of an
electron is similar tahat of anelectron in its orbiexcept that an additional
termg. is needed. The additiortakm is needetiecause theimple model
of a circulating electromsed toobtain EquatiorB-60 does notapply to the
intrinsic spin of an electron.

When an external magnetic field applied to an atom, theffect of the
field must be incorporatedhto the Schroedingeequation. Inclassical
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mechanics, the interaction of the magnetic dipole moment and the external
magneticfield, H , is determined by the dqgtroduct. Usingthe classical
mechanical description, theeffect of an external magnetic field on a
hydrogen atom is obtained by kiag the dot product of H and the
expression foz  in Equatio&-60.

&

R L A TR A TR TS

e

If the external magnetic field is appliathiformly only along thez-axis H,
is a constant), theerms along the xand y-axes are zero. Tlaelditional term
added to thédamiltonian for the hydrogen becomasfollows.

= g H

s (R-63)

e s g He—t g -

Im ¢

The Hamiltonian for daydrogen atom in aniform magnetic fieldalong the
z-axis can be written afllows where A is the unperturbed hydrogen
atom Hamiltonian.

H = ll|;|'|‘::- - J[:Irmnnr = .Iquu: + IHIIHHJ L-__ EE-’ﬁ#]‘

The wavefunctions for Bydrogen atomy,.,, areigenfunctions of{

and L,. As aresultyu, is agigenfunction ofH , theHamiltonian of a
hydrogen atom im magnetic field.

. g0
[H'“ : H',-;—' Loy =1E, & ot 7, e {565

. -

The energy of a hydrogen atom in applied magnetic fieldlepends on the
m; quantum number. Thmagnetidield removes thelegeneracy otates
with the same n antibut withdifferentm, quanturmumbers. The removing

of degenerate levels asrasult of anexternal magnetic field is called the
Zeeman effect. According to Equation8-65, the separation between the
different m; levels will increase with increasing strength of the magnetic
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field, H,. For this reason, them, quantum number is referred to as the
magnetic quantum number

Both the orbital motion and thiatrinsic spinof electron have anagnetic
dipole associatewith it. The two magnetialipoles may interact with one
another. This feature of atomic andholecular structure is callegpin-orbit
interaction. The spin-orbitinteraction is a coupling of the twdifferent
“motions” of spin ofthe electron. The Hailtonian that describes this
interaction is a dot produadf the angular momentunvectors of the two
different types of spin “motions”of the electron. The proportionality
constant isx  which cabe measured bgpectroscopy.

Hlet ey X (R0
Equation 8-66 carbe rewritten in terms of? and® in thi®llowing

fashionwhere the total of orbital and spiangular momentum igiven as
J=L+8§.

H-.pw--u--h- =4.I|[ .

The spin-orbit coupledstates will now have an additionguantum
number J that refers to the totalarbital andspin angular momentum. The
designation of aspin-coupled state ig,; and is an eigenfunctiorsmh-
orbit Hamiltonian. For a hydrogen atom, the eigenvalueZ? Ysm  -Ai(l:
+ 1), the eigenvalues of? y,s, ae-AS(S + 1) (seeEquation8-44), andthe
eigenvalues off * Vasim are analogouslgi(J + 1).

. . b
B™ g = S 4 1= 0 4 L= 5S4 e, (5:68)

The allowed values of J range froh+ Sdownward insteps of one t¢f - S|.
For the case of a hydrogen atamith only ore electronS = %2. Theossible
J values are equal fat 2.  In tlease of the ground-stat# hydrogen/ =0
and the only possible value of Jis .

The energy of the spin-orbit coupled eigenstates foydrogen atons as
follows.
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The result of the coupling of spin armtbit angular momentunis to create

an energydifference between states that would otherwise be degenerate.
This phenomenon isalledspin-orbit splitting As an example, consider the

n = 2, [ = 0 state of ahydrogen atom. In thabsence of spin-orbéffects,
there are six degeneragtates: 2, 2p (1. 2po. Zpdt 2pia, andp.p.
Due to spin-orbitoupling,these states may be mixed in some way, and the
states woulddentified by the twagpossible J valuesJ =1 + 1/2 = 3/2 andJ
=1-1/2=1/2. Note that ae still six statesbecause th&= 3/2 state isfour-

fold degenerate and thle= 1/2  statdvi®-fold degenerate. Thdifference

in energy between twepin-orbit coupled states cée determined bysing
Equation8-68.

ForJ =13/2:
ok | 3 1 i i
E, e .r_,rT[—L—+1]-|{1=11-—[—11”-L,TT
ForJ=1/2:
H i
Fyaaa = E +'F“ie[l[l+tw,—1[|+1]l-1| l+1J!- =K, ~uk’
T ; 2 22y 2.2 i -
AE=E _E o

100w Jirllm 2

=

If the spin-orbit energydifference between these two spin-orbit coupled
energy stateis observed in themission or absorption spectra of a hydrogen
atom, the energy &ierencebetween spectral lines cae lised to obtain the
value fora.

In the case ofatoms with more than one electron, thepin-orbit
interaction is observable in themission or absorptiospectra othe atoms,
even though theinteraction energies aresmall reldive to the transition
energies of thespectral lines. In the casef light elements, the strongest
coupling magneticdipoles is between all thosassociated with orbital
motion with all ofthose associatealith intrinsic spin. So foright elements,
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the coupling must béund between the totahngular momentunvector L

and the total intrinsic spin vect&f  form the total angular momentum
vectorJ . In the case of heavier elements, the strongest coupling of dipole
moments occurs between the orbital and intrirpin of the individual
electrons. The totangularmomentum o&ach electron is determined in the
same way as was done previously for a hydragem and then summed
over all of theelectrons to obtaiy .  Theoupling forlight elementswill be
discussed ietail here.

To aid in counting thepossibleintrinsic spin states, its convenient to
group theelectrons irshells andsubshells. The spin-orbitals with the same
n quanturmumber argeferred to as ahell. A setof spin-orbitalswith the
same n and quantum numbers are referred to asubshell. According to
the Pauli principle, @ubshell of = 0 can have maximumoccupancy of
two electrons; a subshettf / = 1 can have anaximum occupancy of six
electrons; a subshell déf= 2 cdmve a maximum occupancy of ten
electrons; and sdorth. Electrons in the same subshell are said to be
equivalent, and electrons differentsubshells are said tmnequivalent.

As a first example, consider a hypothetical excited electronic state of
lithium.

1s'2p'3p’

All three electrons are idifferent shells and, henceyonequivalent. The
orbital angular momentum afach electron idefined as/,, 7,, and,. The
first step is todetermine theaesultantorbital angular momentum of the first
two electrons,L,,. This idetermined first because the quantum number for
the magnitude oh resultantangularmomentum vector may take on the
valuesfrom the sum of the two sourcdswn to theabsolute value of their
differences. In thisexample/, =0 forelectron 1 and, = 1 for electron 2.
The magnitude ofthe vector sum is equal to only 1.

Ln:il+iz L,=1

The orbital angular momentuwector of the third electrori;, is now added
to L,.
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L.+l = =1Ll 1 -210
This result means that there are thpessibilities in thecoupling of orbital
angular momenturwith intrinsic spin angular momentum.

The total intrinsic spinangular momentum isletermined in the same
fashion. However, in thecase ofintrinsic spin angular momentum, the
quantum numberffor the spin is always %2 limitingthe total number of
possibilities. Themagnitude of thentrinsic spinvector, S,,, forelectrons 1
and 2 are determindiist.

1]
1}
=
+

Ly
e
I

This result indicates that twoonequivalentlectrons may beoupled to the
intrinsic spin in twodifferentways. The third spin is now addedSgq .

Sk =F S -1- + |_....]- -1

L il
gl E ¥ D—E,E.E
To get theS,...;, both possiblevalues of5;,, must béncluded resulting ifwo
differentwaysthat intrinsicspin can beoupled with thedesignation 08,
=Y.

Multiplicity associated with angular momentum is always two times the
value plusone. Themultiplicity of orbital angular momentum ¥+ 1.  The
total intrinsic spinmultiplicity is 25 + 1, and theresultantmultiplicity of the
orbital-spin couplingangularmomentum i2J + 1. Spin multiplicities of 1,
2, 3, and 4 arealledsinglet, doublettriplet, and quartetespectively. For
the current example of thexcited electronic state of lithium, the three
nonequivalentlectrons may be coupled farm a quartestate(S = 3/2):

zsrl_z'[i]n_:;;

4

or may be coupled to form twoftkrentdoubletstateqs = %2):
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-

25 41=12

"
l|+|=2.
2}

The magnetianoment vector/ that resultdrom the coupling of théotal
orbital angular momentunvector L and theotal intrinsic spin vector
S.. Can now be determined.

1otal

total

J=L 1§ J=(L 4§

PRI O T

Lt i Lm - S.wil |

The number of possible statesmust be determined feeachcombination of
possibleS,m and...  For the aasof the excited stateof lithium, the
following Jcoupled states are possible.

Lioat Stotal Possible Yalues

0 1/2 1/2

0 1/2 1/2

0 3/2 3/2

1 1/2 3/2,1/2

1 1/2 3/2,1/2

2 1/2 512,312

2 1/2 5/2,3/2

2 3/2 7/2,5/2,3/2,1/2

As can be seen for the casetbfee nonequivalerglectrons in the excited
electronic state dithium, there are mandistinct spin-orbitcoupledstates
possible.

The energy of the various spin-orltibupled states oabe determined in
the samdashion as for the hydrogen atom (see Equa8ei9).

1
BT - B = Ll 1) S +1) (8700

The value ofa isdetermined byexperiment and will vary fordifferent
systems. As can be seen by Equation 8states with dargeintrinsic spin
multiplicity will be of lower energy. For states with treameintrinsic spin
multiplicity, the lowest energylevel will be statewith largestL,.. The
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energy ordering of spin-orbital coupled statesre first observed on the
basis of atomicspectra andés calledHund'’s rules.

The variouselectronic statesre designatedisingterm symbols The
term symbols state the values forLJ),andS. For the value ok, a letter
symbol is used: fof = 0, the symbol S is used;ffeF 1, the symbol P is
used; forL = 1, thesymbol P is used; and tlsymbols G, H, | through the
alphabet forsubsequent increasing valued of A superscript on théeft side
of the L symbol designates thatrinsic spin multiplicity, and asubscript
designates thparticular spin-orbicoupled J state.

2§ +1)LJ

As an example, for thiewest spin-orbit coupled state for the electronically
excited lithium aton15'2p' ip'], Lo = 2, % = 32, andJ = 1/2, the term
symbol is*P,,. These arealledRussell-Saunderserm symbols because it
is assumedhat the individualorbital angular momentunare more strongly
coupled than thepin-orbitcoupling. If spin-orbit coupling is ignored, the J
term is omitted from the term symbol.

Example 8-5
Problem: Determine the term symbol for a hydrogen atom ignosipig-
orbit coupling in a)ground-state, b) the 2sbital, c) the 2p orbital, and d) a

3d orbital.

Solution:

a) The ground-state: 1s. Follsorbital/=0 and = 1/2. The term symbol
a2

IS°S.

b) For a 2s orbital =0 ar8l=1/2. The term symbol is agd8in

c) For a 2p orbital=1 an8l=1/2. The term symbofBis

d) For a 3d orbital =2 anfi=1/2. The term symbdlDs
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In summary, theHamiltonian of anatom exposed t@ magneticfield
(Zeemaneffect) can bebrokendown into the following components: the
core Hamiltonian, H°*; the electron-electronepulsion, f{""; thespin-
orbit coupling, & ™ ; and th&eemareffect, H ™"

oo B g JEme g Jleneet | g e {R-71]

Note that all othe termsn Equation8-71 areinternalproperties of the atom
except ™ s due tan externallyappliedmagneticfield. The energy
eigenvalues oéach state is determined as a sum of these effemttdrave
been developedhroughout thischapter. Theelectron-electron repulsion
term has a very largeffect on theenergy of the systeriollowing the spin-
orbit coupling and then th8eemaneffect cepending on the strength of the
applied magnetidield. The contributoryaffect ofeach othese properties is
shown inFigure 8-5 for theexcited electronistate ohelium:1s'2p'. Note

M,

iy
: \H‘-\.\_H Py J i
R e i
oy ey
h_-'.".':'¥='-_::._=\-\._-\"'\-\_g
}P: "':-\""'\.H-- 1
\ il |
I N |
182" 1 -2
_l'..
oo electron-elbectron spin-ortit Zeernan Effect
rpalsion coupling

Figure &3, The relative mdividus] contributions on the number of possible staes
for an clectronically exciled helium atom where the electrons are in the 15'2p" arbitals
are shown. All of dhe effects are imernal exceps the Zeeman effect that is 4 resall of a0
exiernally applied magnete field
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that the number gfossible states increasesth each contributory term in
Equation8-71.

8.6 SELECTION RULES AND ATOMIC SPECTRA

To cause electronidransitions in atoms from the ground-state will
generally require radiation in the visible orultraviolet region of the
electromagnetic spectrum. Aatomic spectrum can be in terms of
absorption as aelectron is promotettom alower energyorbital to a higher
one, or the spectrum can ipetermsof emission, éllowing an absorption, as
the electron goes from a higher energy orbitalltover orbital energy.

The selectionmules foratomic spectra ardetermined in thsame way as
it was done previously for vibration-rotation spectrosc(gge Sectior6.7).
For a hydrogen atom, the dipole moment operator of the incoming photon,
H, ,is operated omnd integrated over all spdoetween the initial state i,

m, with the finalstate n’l’, m,’. Allowed transitions occur when the integral
is non-zero and forbidddranstions argvhen the integrak equal tazero.

I:r:,.ll,mlif;rl_ln',nr',ml.'} [

The selectionrules interms ofl andm, have beedetermined previously for
the vibration-rotation ofa molecule(recall that thewavefunction for a
hydrogen atom is in parthe sphericalharmonics, RyY:, ) by simply
replacing the J for ahandM; for amm; in Equatiof-84.

|af =1
|2em, | =0

The integral in Equation8-72 in terms of the rdial component is

considerably morelifficult to solve. Theresult of the integration is that any
An is allowed.
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E ne=d —— B e i | p— _—
n . g -—
o g re—— . g .
!
B 1 ———E
-":,. = .'l:_ 5
Frpure 8- Some of the allowed absorption transitions for o kwdogen atom thad

have been obaerved ane saown

In terms otermsymbols, the selection rules medhat since the ground-
state of a hydrogeatom is®S, theonly absorptioriransition that is allowed
is to P states. From an excit&®l state, transitions tt8 and’D states are
allowed. Figure 8-6 bows the enesglevels inhydrogen andhe observed
transitions. Interms of emissiospectra, the reverse is alsae. Emission
and absorption spectra lofdrogen (and other atoms) appear as lines at the
various allowed transitions. Trspecific enissionlines in hydrogen fon;
— ngare given by théollowing expression.

e

The constant terf®y  isalled theRydberg constant.



Atomic Structure an&pectra 219

Tahle 5.3 The common emission Hnes for hydrogen atoms along with the name of
the series are listed in the tehie bedow,

n n Benes Radiason

1 . Lyman ulraviobet
2 W4 Balmer visble

. | 4. 5., Peschen imfrared

4 3. 6, Brocket far imfrared
5 i Piand far mfrared
& T.8 .. Humphrey's far mfrured

R =% harrees =13 .006Ge ¥

The various linesseen in anemission spctrum are named by their
discoverersor principalinvestigators and are shown in Table 8-3.

In the case of a hydrogen atom, all ofthe states are doublets. taske
of multi-electron atoms, there may bedifferent spin states. For light
elements where the spin-orbit coupling is weak, fietectionrules are as
follows.

A% =1l (8-74a)
jarf=1 {B-Tet)
|as] -0l {B+%4c)

In addition, the change inis only allowed ifthe changeomesabout in the
change irl ofonly 1 from one electron.

The allowed transitions in atomg&pectrawill correspond to the strongest
transitions. Forbidden transitions Wihost likely be observed ira spectrum
becauseelectron-electrorrepulsion will result insome mixing of atomic
orbitals. Once the ssignment of transition lines in aomic spectrum are
made tospecific transitions inorbitals, thisinformation can be used to
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determine such properties as ionization potential, excitation energies, and the
extent ofspin-orbitcoupling.

PROBLEMSAND EXERCISES
8.1) Confirmthatay,, wavefunction forlaydrogenatom isnormalized.

8.2) Calculate the average position of the electron fromrtheleus for a
hydrogen atomin a2p., orbital. Repeat thecalculation for aLi*® ion.
How does the average positionthe electron compareetween an H
atom and d.i** ion?

8.3) Determine how far out the dgl coordinate youmustintegrate in
order tocapture 90% of the electron density for an electron in a 1s
orbital of ahydrogenatom.

84) Determine the maximum points and the nodes ofa 3s orbital.

8.5) Plot the effectivepotential in Equatior8-15 for anelectron in a d and
an forbital for a hydrogen atom agwnction ofr. Atwhat point is the
potential aminimum for eab orbital? Howdoesthis compare to the
average positiofor theseorbitals?

8.6) Using the following trial wavefunctiondetermine the ground-state
energy ofa hydrogeratomusing variational theory.

_wx

WIn'al = Ne

The terma is an adjustablearameter and N is the normalization
constant.

8.7) Using the trialfunction provided in EquatiorB8-33, explicitly obtain
the expression for theffective nucleacharge in Equatio8-42.
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8.8) Determine the STO for aglectron in a2p, orbital in a C atomusing
the Slater'srules. How does this Wae compareto the computed
values given in Tabl8&-2?

8.9) Plot the radial component of the STO obtained in Problem 8 as a
function of r. On thesameplot, alsoplot the radialcomponent of a
2p, orbital of a one-electron systemhereZ = 6. What aredifferences
and similarities between the two radiahctions?

8.10) Determine thetotal number oftatespossible for a Li atonwith an
electronconfiguration ofls'2s'2p'.

8.11) Write theterm symbol for anelectron in the lowest energy state in the
excited Li atom in Problem 10 above.

8.12) Propose an absorpti@pectrum of a helium atothat is initially in the
ground-state. Labetachabsorption line with the transitionsing term
symbols.

8.13) Calculate the wavelengths for the emissimansitions of aHe® ion as
the analog of the Balmer series @nhydrogernatom. What part of the
electromagnetic spectrum do thesavelengths correspond to?

8.14) Give the numerical value iatomicunits for thefollowing quantities:
a) a protonp) Planck’sconstant, and c) thepeed ofight.



Chapter 9

M ethods of Molecular Electronic Structure
Computations

With the advent of high-speed computers beingreadily available,
electronic structure computations have become an important component of
theoretical andexperimental chemicatesearch. Calculations may be
performed on highlyeactivemolecules and transiticstates aseliably as on
stablemolecules. There are aaumber of commercially available software
with excellent graphics thatllow for excellent viewing of three-dimensional
structure, electron densities, and dipole moments.  Thermodynamic
information such as heatsf formation andstrain energies cabe readily
obtainedfrom suchsoftware. Reactiodynamics caralso be obtained such
as transitionstate structures. Thischapterwill focus on some of the
computational detailsnvolved in these programalong with a practical
“hands-on"guide for using theraffectively.

9.1 THE BORN-OPPENHEIMER APPROXIMATION

The Hamiltonian for a moleculiss easily determined.The Hamiltonian
will include kinetic energy terms for thruclei (indexed by A) and electrons
(indexed by a), electron-nucleus potential (distances@parationra, ),
nuclear-nuclear potential (distanad separation oR,g), and electron-
electronrepulsion(distance of separatiag, ).

222
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Though the completelamiltonian for a moleculés easily determined, the
resultingSchroedingeequation ismpossible tosolve,evenanalytically.

An approximationthat can be made is to realize that thetion of the
nuclei is sluggish relativéo the motion of the electrons due to the large
differences inmass. Due to the gredifference inmotion between the
nuclei and theelectrons, the electrons ameapable of instantaneously
adjusting to anghange in position of theuclei. Hence, the electron motion
is determined for dixed position of thenuclei making the distanc®s in
Equation 9-1 nowa constant. This approximation iscalled theBorn-
Oppenheimer approximation.  TheBorn-Oppenheimerapproximation
removes the kinetic energy operators forribelearmotion in Equatiord-1.

Fou et dH I et Ak z ahern vy LTy
PR S SRS s T i LT s L R ]
- r v P 2p & 'H.u ferey CR

The Schroedinger equation thatsolved for thejust becomes the electronic

Schroedinger equation fdne moleculeplus a constarterm for the nuclear
repulsion.

ﬂ :w 1 -l{E A x * E--.-rlr:r :Iwiln'l.nlr {9_3}

The Schroedinger equation is solved for the electrons fixeal static
electric potential arising from thauclei in that particular arrangement.
Differentarrangements of thauclei maythen be adopted and tbalculation

is repeated. The set sblutionsobtained can then besed to construct a
molecular potential energy curve for a diatomic molecule opadential
energy surface for a polyatomic molecule. Thbevest point of the potential
energy curve orsurface is thendetermined to identify theequilibrium
geometry of thenolecule (se Figure9-1). Thewavefunctions thatkesult in
the computation are calledolecular orbitals (MO).
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Partential Encrgy

Equilibrium bond length

Imter-nuclear distance, By

Figure 31, The molecular potential energy curve of o digtomac malecale s shown.
The mammum paint @ the curve represests the squilibnum geometry (e, equiibrium
boned length) of the molecule

92 THE H," MOLECULE

To obtain anunderstanding dbonding, it ishelpful tofirst look at the
simplest moleculasystem,H,", where there is only one electron and two
nuclei (see Figure 9-2). If the BeOppenheimer approximation is made,
the Hamiltonian can be readily written from Equat$sa.

H:-j_‘;l': — e
2 ¥

(94}

The term1/Rsp IS a constant forparticular nucleaconfiguration. The
Schroedingeequation will be only in terms oféhelectronic motion.
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Ras

Figure #-2. The relative positions of the particles ina Hy' molecule are shown. In
the Born-Oppenbeime: approximation, the position of the nucle! is Nxed & B,y

When the electron islose to the nucleus Ahenrg is very large and the
potential tonucleus B isnegligible making the orbital similar tihat of a
hydrogen atom. The reverse is alsoe, when the electron is close to
nucleus Bthenr, is very large makinthe electronappear as aydrogen-
like orbital aroundhe B nucleus.Based on thisnalysis, it iseasonable to
construct themolecular orbitals from a linear combination of atomic
orbitals (LCAO).

w=Tey, 19-53

Thec; terms areoefficientsindicating the magnitudef contribution of each
atomicorbital ¢; tothemolecular orbital.

The atomic orbitals used in thensun Equation 9-5constitutethe basis
set. In order tgproduce aprecisemolecularorbital, aninfinite basis set
should be used. Qfourse inpracticeonly afinite basis set is used. The
most severaruncation ofthis infinite sum is to use themallest number of
functions tohold all of the electrons in aatom andstill maintain the
spherical symmetry of the atom. This is callechimimal basis set. The
minimal basis set aftomic orbitals for thefirst three periods of the Periodic
Table ofElements iggiven asfollows.
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I1, He: 1s

Ly, Be: 1s, 25

B - Me: 15, 2, 2pg, 2p,, 2P, 35

HMa, bMg: Is, 25, 2p.. Ip.- 2P 15

Al Af s, 25, 2., 2. 20 35, 3p. 3p.. 3

For the case of thH,” molecule, the minimal basisvilebe two 1s
hydrogen atomic orbitals one centerednaicleus A and thether centered
on nucleus B.

WS E A, Ty t0-6)

The optimal values of the coefficients, ancgy  adetermined using
Variational theory (see Section 4.1).

£ wlaly) e, v e H]c e, v egnyd
Gwleed e, poae, o, Foam, )
{2-7)
_ {'.:1'::";"?1 |H|q}.1}+fnfl '::'F’.; |'HI|'F':.:' + Eaii‘{‘:g: |H|¢'.q:|+c:'{'i':'a |H!'i'5'1::'
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It is convenient at this point to introdusemeshorthanchotation. The
molecular Coulomb integralsare symbolized a¥i,, anfllzs. The
molecular Coulomb integralsorrespond to the Coulombic attraction of the
electron toeachnucleus.

H.o=to,|H]e) (9-8)
Hu= '::'-"-'.l |;:"'|'F'5'.1 :' (893

The resonance integrald,s andHg, have no classical counterpart and are
defined as follows.
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H,. l.l:..l;f.'_‘ |H'|p” (10

H oy = g |Fhe,) (0113

SinceH," is shomonuclear diatomic molecule apd apgd  are (eal
hydrogen 1s wavefunctionsi, = Hgs  afklz = Hp,. Taemic orbitals
oaandoeg are normalizeaksulting in thefollowing simplifications.

Se=tede, =1 and 5y ={p,le,)=1 (9-§2}
The last integrals to consider are therlap integrals symbolized byS,s

and S;,. Since thevavefunctions areeal in the ground-state ®f,", S5 =
Sg« and are jussymbolized byS.

S=ig et =lea e (9-13)

Utilizing the notation and simplificationsthe variational egrgy E in
Equation 9-7 can beeduced to the followingxpression.

E=r.:H.M +2{-JFJH.H +c:Hﬂ I::'Q‘-]'II:I

1 1
co~c,e 8 +r;

Taking thefirst deivative of E in Equation9-14 with respect to each
coefficient andsetting it equal to zero now optimizes thefficientse, and
cg resulting in thesecularequations.

c (H, - Flec {H, -5E)=0 (9-15)

[;’?JE‘,_I}
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Energy a*

5 or i

Figure 9.3 The symmeinc, o, band and the anfisymmelnc, a®, are shivams for &
H." molecule.

CAH g -3t -ey H oy - R0 {E'L]ﬁ-:l
The coefficients ardetermined from theeculamdeterminant.

H, £ H,-8

-0 517
H.-5 H,-£ W-13)

Expansion of the seculateterminantresults in the followingexpression
upon recognitionthat H.4 = Hps.

i, EV-i{K, SE¥ =1
i, - &) - L{, - SE} (%18

The energy Es solved for in Equatio®-18 resulting in two diferentvalues.
The resulting energy values asfgown inFigure9-3.
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Figure ¥4, The electton dersites for the o and o wavefimctions for a Hy
mileculs are shown, Mote thst for o*, there is no slectron density beteeen the nuclei and
sxual eleciron density en each necleus,

E.= % 19201

The termE, is the symmetric bondingpde andt,.  ishe anti-symmetric or
anti-bonding mode. Substituting theexpressions folE, and E,. into
Equation9-16results in the followingxpressions for theoefficients.

=r, (S¥TIIMCLTIC, ) (921}

c,=-¢, (anh=symmetric, a*)  (%22)
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The wavefunctions for thesymmetric and anti-symmetristates can be
written as follows.

.ur.g =I'.'_|,{l"::'l *II"J} {9'23]

at =0, {#‘I,f - "pp} I:-.I;_Eq'}

The shapes for th@avefunctions are shown Figure 9-4.

The result for the ground-state athydrogenmolecule is similar to that
for aH," molecule.Therewill be an additionaklectron and iwill be placed
in theo orbitalof oppositespin with the other electron. When higher order
diatomic molecules or excitedstates ofthe hydrogen molecule are
considered, then p atomarbitalswill combine to fom molecular orbitals.
When the2p, atomiorbitalsoverlap, as bond iformed that issymmetric
about the inter-nucleaaxis. The two2p, molecularorbital wavefunctions
are as follows.

W29 )0=Nw,,, ti.;,) [9-2%)
woi2p ) Nie,, e, ) i9:26)

After the 2p, atomic orbitalsform o bonds, the2zp, andp, atomirbitals
combine toform n bonds. The&p, orbitalsform anode in theyz plane, and
the2p, orbitalsform anode in the xz plane. Eaettiomic orbital willformn
andn* bondsespectively.

The electrons ina molecule areordered from the lowest occupied
molecular orbital tohighest occupied molecular orbital (HOMO). The
ordering of electrons occurs in pairs of opposite spins (according to the Pauli
principle) as shown ifigure 9-5 for a COnolecule. Thebond order (BO)
is determined by taking the sum of electrons in bonding orbitals minus the
sum of electrongn anti-bondingorbitals.

Bond order = (# oklectrons irbondingorbitals
- # of electrons in anti-bonding orbitals)/2
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Enorgy C co O
'

Figwre 85 The molecular orbitals for 0 CO melecule are showm.  The atomis
orbitals for C and O sloms are shown o the left and right and then how they combine 1o
form the molecular erbitale of OO0 in the cerder. The verlical hoes in each ocbital
represent &n elestron.

For the case of CO, there are 10 electror®imdingorbitals and 4 electrons
in anti-bonding orbitalsesulting in a bonarder of 3; hence, CO is said to
have a triple bond. Note that alternativelgly electrons in thevalence
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Table 9.1, The bond erders of a number of dixicmsc moleceles on the basis of
LA approximation are listed

Murmsber of Boading Murmber of Ani-Bonding Bond Owder
 Elestrons Elcetrons
H: | i 12
Hs M
![r; :
Li, i
0, 4
':_-l;\- i}

[~ - R N R CN TR PN
Bl — = —

orbitals need to be counted to determine the bond order since the electrons ir
lower levels are filled and will cancel. The boodder for anumber of
diatomicmolecules is stwn in Table9-1.

9.3 MOLECULAR MECHANICSMETHODS

In the Born-Oppenheimer approximation, the energy of a molecule is
computed for aspecific nuclearconfiguration. Aninitial “guess’to the
nucleargeometry is madand the energis calculated. The computational
cycle is repeated untihe equilibrium geometry is obtained. THeser the
initial “guess”for the nuclear configuration to the actual equilibrium
geometry, thdess computationalcycles that are needed. As a result, for
high-level calculations on large moleculesgeod startingpoint for the
computations bexnes increasinglynore important.

Molecular mechanicsmethods are anon-quantum ife. classical)
mechanical computation farbtaining geometries of gas phase molecules.
As a result, molecular mechanics methods are computationédigt.
Molecular mechanics methods use empirifiice fields to describe the

energy of a giverconfiguration. The esrgy of a givenconfiguration is
calculated afollows.

pandwl rplers of quariets af
Fliep )13 MR AT

E - X bond stretching + X angle bending + T dihedral
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parsul tenn. s ol alont

1 Y pur bonded {van der Waala - 2 Cwcambie

Molecular mechanics treats a molecule as an arratavhs governed by
a set of classical-mechanical potentfahctions. Theparameters for the
potential functions used in thecalculation come from experimentaldata
and/or high-levelguantum mechanical computations similar molecules.
The assumption in the technique is that similands indifferentmolecules
will have similar properties. This assumptionworks well so long as the
molecules being calculated do rdiffer significantly from the molecules
used to determine the parameters for thece fields. Theresults that are
obtained from the moleculanechanics computation are only as reliable as
the empirical data for thdéorce fields. Hboke's Lawapproximatesoond
stretching. Anglébending is determined asgaven bondangle is deformed
from it is optimal angle®, by a fon similarto Hooke’slaw: k(0 - 8,)>.
Steric interactions are accounted for lging van der Waal$unctions that
can either be composed of a sixth daneklfth powerfunction oralternatively
the twelfthpower is replaced with an exponential. Itastuallydifficult to
breakdown thecontributions to the moleculgpotential energyto each
separatenteraction as mangffects ardnter-related. So the parameters are
spreadinto each of thedifferent force fields to ensurethat experimental
results are reproduced.

One very commomolecular mechanics packageS¥BYL. SYBYL is
a simplecomputatiorthat requirevery few data taestablish parameters. As
a result, SYBYL can beused for elementthroughout thePeriodic Table.
The results of SYBYL of are not asaccurate compared to high-level
computations, and some results ahewn inTables 9-2and 9-3.

Another common and more comgied molecular mechanics package
MMFF. MMFF requires much mordata to establish the parameters used in
the computation. The results are more accurate 8¥BYL (as shown in
Tables 9-2 and 9-3), byarametersre generallyavailable onlyfor organic
molecules and biopolymers.

Molecular mechanics techniquesare valuable computations for
establishing goodtartingpoints ofinitial geometryfor higher-levelquantum
mechanicalcomputations. Theccuracy of thegeometries obtained can be
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Table 22 The ealeulsted geometry using SYBYL and MMFF for a number of
different types of bonds are shown. All bond destances we in A, Duta abiained from
Wavelunction, Inc. with pesmission

bond molecule SYBYL MMFF experimgntal
C-C bat-1-yme-3-cne 1441 1.419 1.431
prapyTe 1453 1.463 1.459
I, 3-buiadicne 1478 1.442 1481
propene 1508 1.49% 1.501
ey%lopropanc 1.543 1.502 1.510
propanc 1.551 1.520 1.524
ey lobatang 1.547 1.543% 1.54%
C=C  eyclopropene 1317 1102 1304
allens 1.305 1247 1308
[PhOEEne 1.13% | 335 1318
cyvglobatene 1327 L 1332
bud-1-ymee-3-ene 1338 1.137 1.34]
1,3 buiadicne 1338 1338 1.345
cyclopentadiene 1.33% 1341 1.345
C=C propyne 1204 1.201 1206
Biut- [ -yne-2-cne 1204 1.200 1.208
C-M formarmide 1 Adh | 3 1. 37
irimethylamine | 4E3 |.462 1.45]
anridine 1 454 | 455 1475
nirormethanc 1458 | 4ER | B
C-0 larmie acid 1334 1348 1.343
dimruthyl dher 1.437 1421 (LI
msethanol 1437 l.&l& 1.d2Z]
C=() farmic acid i 22 1207 1302
formaldehyde 1220 [.225 .108
aceEtone 122] 1.230 .72
C-5 dimethylsulfoxide | 8034 I.200 1,798
demwethytsal fide 1820 | .B0E 1. 20X
mthane thial L K21 I.5304 LEIR
C-C1 trichlosomethans i.7a7 LriE 1,758
dichloramethane 1.767 1.767 L.77Z
chilorometsane 1.767 1767 1.7E1

as close to thevalues obtained from higher-ordequantum mechanical
computations. The results from these packages however are generally
limited only to geometry and confoational energies.
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Tabde 9-3, Barriers 10 mtemal rotation calculabe=d usmg SYBYL and MMFF for a
mnumber of crganic motecules are shown, All valees are in keal/mol, Daga obtmined from
Wavefunction, Inc, with permission.

bond rizlecule SYBRYL MM FF experimenial
- CHy = CH, ER-! 432 BB
CHy = CHLCH, 4.0 14 34
CHy = CIEH,), 4.7 &l 4.7
CH; - CH=CH; 1.3 0 24
CH;- CHO o il | 1.17
HC=CH - CH=CH,* 4.9 il 5.0
H;C=CH - CHO 5.2 1.8 T8
C-H iCH; - NH; 20 24 .98
iCH, - NHCH, .0 33 362
-0 CH, - OCH, 41 24 2.1
CH,-0H 4.0 .2 |07
CH, - DCHO 64 i WL

*Barrier relative 1o trans confleuraiion

94 ABINITIO METHODS

The term“ab initio” comes from Latin meaning from the beginning. The
implication is that theeomputations are exact with no approximatiomis
is certainly not thecase, ashe Schroedingeequation formore than a two-
body system cannot be solved wthout approximations and using
approximatiortechniques. Whatdb initio” does mean ithis context is that
the integrals involved in the Schroedinger equation for the system are
explicitly solvedwithout the useof empirical parameters.

The first assumption that ismade is the Born-Oppenheimer
approximation. Asdescribed in Section 9.1, thisduces the $coedinger
equation for a moleculaystem to onlyhe electronic motion for a particular
nuclearconfiguration. As metioned in Sectior®.3, an optimizedhuclear
configuration as atarting point for arab initio computation cahe obtained
by using amolecular mechanicsmethod. This reducethe number of
computational cycles needed timd the equilibrium geometry and hence
energy of themolecule. The Hailtonian for the moleculasystemwith the
Born-Oppenheimer approximation is as giverEguation9-2.
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Due to theBorn-Oppenheimeapproximation, the inter-nuclear distances
(the R4 terms) areconstant for a particular nuclear configuration.
Consequently it izonvenient to express the BeOppenheimeHamiltonian

as only the operator parts in terms of the electrghg: " , and add the
inter-nuclearepulsion potential tdhe electronienergy, £ ™™ to obtain

the energy of thenolecule,E.
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The nextstep is tomake theHartree-Fock self-consistefield (HF-SCF)
approximation aslescribedpreviously for amulti-electron atom irSection
8.4. TheHartree-Fock approximatioresults inseparation of the electron
motions resulting (alongwith the Pauliprinciple) in theordering of the
electrons into themolecular orbitals ashown inFigure 9-5 for carbon
monoxide. Hence, themany-electron wasfunctiony for anN-electron
molecule iswritten interms of one-electron spagavefunctionsyf;, andpin
functions,o. orp, like what was done focomplexatoms in Section 8.4. At
this stage itis assumedhat the N-electronmolecule is aclosed-shell
molecule (all the electrons arpaired in the occupied molecularbitals).

How molecules with open shellre represented will bdiscussed later in
this Section.

W= LAl (208 - fL 3 (%79
As described in Section 8.4 for raulti-electron atom, the HF-SCF

approach assumethat anyone electronmoves in apotential that is a
spherical average due to the other electimd the ndlei of the molecule.
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The potentialfrom the nuclei is set by thenitial configuration of the
molecule, and the potentiflom the other electrons are determined from
initial approximate wavefunctions resulting in the Hartree-Fock
Hamiltonian, 4% .

N e F [ - "
H¥m = __l]_?, -7 f[;qu - &) [4-30}

A K,
The first two terms in Equatior®-30 carespond to the kinetic energy
operator of the electron and the attraction between one electron and the
nuclei of the molecule.These first two termgonstitute what ialled the

core Hamiltonian - no interactionsom otherelectrons(seeEquation8-52).

The next term,?j(l) , Is theCoulomb operator.

= frf S, (:31)
12

The Coulomb operataccounts for thesmeared-out electropotentialwith
an electron density ¢f;2)l> (thactor of 2 arises because there are two

electrons in eactspatial orbital). The last term iRquation9-30 is the
exchange operator.

K=

-
f AR, 1%

L

The exchangeperator has nphysical interpretation as it takes into account
the effects o$pin correlation.

The Schroedingezquation isnow solved for the one etéron f(1).
XA -, 400 (3-31)

The terme; corresponds tbe orbital eargy of the electron ascribed fit).

The molecularorbital wavefunctionsf, aresigenfunctions of the Hitee-
Fock Hamiltonian operator, #% , and can behosen tobe orthogonal
causing many integrals the expression to vanish.
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The true Hamiltonian andvavefunction ofa moleculeincludes the
coordinates of all N electronsThe Hartree-Fockamiltonianincludes the
coordinates of only onelectron and is alifferential equation in terms of
only one electron. As can lseen byEquations 9-31 an@-32, the Hartree-
Fock Hamiltonian dependsn its eigenfunctions that must be known before
Equation9-33 can besolved. As in thecase for multi-electrontams in
Section 8.4, thesolution of the Hartree-Fookquations must bdone in an
iterative process. The energy of thlecule interms of the Hartree-Fock
approachE™, isletermined afollows.

[T R Y

EM oate o tizS -k )+t

v {924

" L

The first summation in Equatio®-34 is over all the orbital energies of the
occupied molecular orbitals. (again, tfeetor 2 isneeded because there are
two electrons ireach molecular orbital). THermsJ; an&; are determined
by operating the Coulomb operator (Equati®81) and theexchange
operator (EquatiorD-32) onf{1) andmultiplying the result byf*(1) and
integrating overall spaceThe last summation term iBquation9-34 refers
to the inter-nucleaepuslion potential foa particular nuclear configuration.

The spatial one-electromavefunctionsfi(n), areepresented as a linear
combination ofatom-centeredunctions(i.e. atomic orbitals)g,, called the
linear combination of atomic orbita(t CAO) approximation. Thdunctions
@i constitute a basis set. Thisthe sameapproach used for multi-electron
atoms and for thH,” molecule. Thendex k refers to thespecific atomic
orbital wavefunction, andhe indexi refers toits contributionto a specific
molecular orbital.

finl=Yr o, (3557

The best representation of thlecularorbital occurs when amfinite sum

of atomic orbitals is made, but of course in practioly afinite N’ sum is

used. (Note that the term N’ should not beonfused with N coesponding
to the total number of electrons in the molecule). Thefficients c;

correspond to theontribution of eachatomic orbital to the corresponding
molecular orbital.
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The energy of a giverlectron in amolecularorbital ofthe moleculeg;,
is calculated as &unction of thecoefficients forthat moleculatworbital, c.
Theseequations are called tioothaan-Hall equations. Equation9-35 is
substitutednto Equation 9-33.

Te,H g, =6 5,0, (9-36)
1

In order to calculate?? , an initiduess” to thecoefficients for theother
molecular orbitals f; must bemade. Multiplying Equdion 9-36 by ¢*
(wherej =1, 2, 3,..., N’ )andintegrating yieldghe followingexpression.

Er‘u{H:‘f —e 5, =0 [9-17]
The termsH j.{ arealled theFock matrix.
HE =, [0 |, (%-34)
The termsS;, are theverlap matrix.
§a=io |, (9-36)

Using Variationaltheory, thecoefficients areoptimized by taking the
derivative ofg; with respect to each ¢fieient andsetting it equal tazero.
This results in a set afquationssimilar to thatobtained for théd,” molecule
(Equation9-15 and 9-16).

detlfr ™ 585, b=0 4-20}

The optimizedcoefficientsobtainedfrom Equation9-40 for eachmolecular
orbital in turn are then compared to thiial “guess” for the coicients. If
there is adifferance, thecomputation is repeated withe new optimized
coefficients. Ifthere is nosignificant difference oenough computational
cycles have beenompleted so thahere is nosignificant difference, the
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computation is terminatedThis iterative process (as ithe case for atoms as
described in Chapter 8) is called a self-considteid.

Point of Further Understanding
Desenbe the similaribes and differences between the HF-SCF-LCAO
computation of & multi-electron molecule and that for a multi-electron atom

25 described in Section 8.4 and for the H:" molecule described in Section
9.2

In the case of a closed-shetloleculewhere all of the electrons in the
occupied molecular orbitals are paired, tha@vefunctionrepresentation is as
described inEquation 9-29. Numerous cancellationswill occur when
integratingover these spinvavefunctions due to therthonormality of the
spinfunctionsa. and3. Electrons withlike spinswill interact and electrons
with unlike spinswill not interact. Thefunctionrepresented iEquation 9-
29 is termed aestricted Hartree-Fock (RHF)wavefunction. An example
of a closed shelmolecule is carbormonoxide. There are a total of 14
electrons that are paired up in seweolecular orbital§seeFigure 9-5).

There are two commonly used procedui@sopen-shellmolecules. In
an open-shelinolecule, not all othe electrons ithe moleculaorbitals are
paired. Anexample of ampen-shelimolecule is nitrogen monoxid&here
are a total of 15electrons occupying eightmolecular orbitals. One
procedure foropen-shell macules is to use an RHFavefunction as in a
closed-shell molecule. Thdifficulty with this approach is that the lone
electron in themolecular orbitalvill interact only with the other electrons in
the molecule with thesame spin. Taelax this constraint on the solution,
each electron in molecularorbital isgiven adifferentspatialfunction. The
relaxing of the constraintthat electronsmust occupy moleculaorbitals in
pairs is called theunrestricted Hartree-Fock (UHF) wavefunctions.
Variational energiescalculated using UHFRwavefunctions aregenerally
lower in energy than thosecalculatedusing RHF wavefunctions. One
difficulty, however, with UHF wavefunctions is that they may not be
eigenfunctions of # total squaredspin agular momentum operators?,
whereas RHRwavefunctions are eigenfunctionshis canlead to impure
spin states for themolecule. In practice, theS® expectationalue is
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calculated for a UHRvavefunction. If the value results in the true value of
#2515 + 17, the UHF wavefunction is eeasonablenolecularwavefunction.
Oftenthough the UHRwvavefunction isused as dirst approximation to the
true moleculawavefunctioneven if asignificantdiscrepancy exists due to
the lowerVariationalenergyobtained.

The next thingo be specified is the kind of functiongg, to beused for
the LCAO approximatiorn Equation9-35.

fim=Se.p,

From the experience dhe He atomcomputation inSection 8.2, the
hydrogen atonwavefunctions are not good choice as a startingoint for

systemsawith more than one electron due to electron shieldifigcts. One
reasonable choice for a sethafsisfunctions isSlater-typeorbitals (STO's)

as introduced irSection 8.4. In gactice though, most ntexular HF-SCF-

LCAO computations useGaussian-type orbitals (GTO). A Gaussian
functioncentered omucleus A has the following form.

LA Sy {9417

The termN is the normalizatiorconstant, and ithe shielding constant.
The radial partof the Gaussiarfunction is similar to that used for the
harmonic oscillatowavefunctions. Thgeneral shapes are shown in Figure
5-1 where the agin for the Gaissian functiomwill be atnucleus A. Aswith
STO's, thesphericalharmonics, ¥,™ (#,41. areised inconjunctionwith the
radial component. The Gaussiimctions do nohave the proper cusp at
the nucleugi.e. smallvalues of, ) for atomic orbitals; hence atoroibitals
are represented by knear combination othe Gaussiarfunctions. This
results in an increase in thember ointegrals that must bsolved in a HF-
SCF-LCAO computation; however, the computer computational time is
reduced forGTO's than for STO’s. Thereason for thalecreased@omputer
computational time is because two Gaussfanctions centered at two
differentnuclei is equal to aingle Gaussiacentered at third point.

The number of functions, N’, to hesed in the LCAO approximation now
needs to be determinedAs mentionedn Section9.2, the smallest number
of functionsthat can be used is the minimadsis set. The minimal basis set
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mnge attainable by combination of
oufer and mner funcisoes

outer p-funciion inner p=fumcion

Figure B8 A schemahbic of the effect of a split-valence p-ortatal i shown, The size
af the alomic orbatal m g contnbutson to the molecwlar arbital can be varied within the
lumdis sel by the fnser and outer funetions

is comprised of the minimum number of atomic orbitals needed to hold all of
the electrons in a given atoniThere argwo shortcomingswith using a
minimal basis set for moleculaystems. Onshortcoming is that abasis
functions areeither themselves spherical (such dargtions) orcome in
setsthat describe a sphere (such darnrtions). Consequently, molecules
that incorporate only atoms with &@pherical environmentre better
described by a minimélasis set than moleculgmtincorporate atoms with
an aspherical environment. The other shortcoming of a minimal basis set is
that the basis functions are atom centered. This restricts the flexibility of the
functions to describe electron distribution between the nuclei tform
chemicabonds. The negffect ofthese shortcomingsie make molecules
too ionic and bonds too long. The obvious answbpotb shaicomings is to
add mordunctions to thdasis set. Aincreasedbasis set means ttthere
are moreadjustableparameters in the Variationaptimization;however, it
comes at thexpense oincreaseccomputationakffort.

The firstshortcoming of a minimal basget, that the basisunctions are
too spherical, can be resolved by introducirgpht-valence basis setn
these basis sets, thialence atomic orbitals asplit into twoparts: annner
compact orbital, and an outer maté#fuse one. The oefficients of thenner
and outer orbitals can be varied independently in the construction of the
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Table &4 The HF-SCF-LCAD calcubsted geometry for a sumber of differem
types of bonds using different basis sers. All bond distances are in & Data obiined
foom Wavefunction, Inc. with permisssen

bond  molecule STO3G  33NG 6-310%  experiment
CC but-1-wme-3-ene 1455 1431 1.459 1431
propyme | 484 1 46 1 468 |.459
| Fbutadiene | 4EE L.47% 1458 I 281
propens 1.320 Liln 1.503 I-50]
cyelopropans 1,302 1,313 1457 L5140
propans .34 1541 1.328 i A2
cyclobutane |. 554 1.571 1.548 | 548
C=C  cyclopropen: |.277 1.282 L2756 I 300
allzme 1.28% 1.2451 1. 25 I 308
popens 1.308 1316 1318 1313
cyclobutene 1,314 1. 326 Y. 1332
ol | =y d-ene 1. 3200 1310 §.a2x 1.34]
1. 3-butadiene 1313 1320 P23 1.345
C=C propyne 1.1 18K 1187 1.2
bul- | -yrme-3-ene 1.1N 1150 1.188 1.20%
-0 Formsc acid 1335 1 350 1,323 1.34)
dirseky] echer |.433 1435 1.2391 1410
C=  [osmdc acid 1214 1.198 1.182 1. 2402
Forrmaldchyde 127 1207 1.184 1. 208
seEone | .20 1201 1,132 1.112

molecularorbital in the SCF computation. Thsize of the atomic orbitahat
contributes to thenolecularorbital can be varied within the limits set by the
inner and outer basfsinctions asshown in Figure 9-6 for a p-orbital. One
common type of split-valence basis set used B24G. This nomenclature
meanghat thecoreorbitals(the first numberbefore the dsh) aremade up of

3 Gaussian functions. The inner valence orbitals are made up of 2 Gaussiar
functions(next numbeaefter thedash), and theuter valence orbitals is made

up of 1 Gaussiafunction.
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Table @5, Bond desociation energy (HX — H" + X') & ghoon caleulated usng HF-
SCP-LCAC with different beasis sete Al values are expredssd im keal'mol. Data abisined
from Wavefunction, [ne. with pernission

HX 321G (o] [ gnperimental
CH, 463 457 426
MH,4 463 444 409
H;O 450 420 68
C;H; 4048 40 151
SiH, a0 J88 178
HF 432 Ll ITh
FH, 287 383 576
H:5 Mid a0 LR |
HCH e Am LR
HCI 117 115 117

Molecules that contain thaetoms Li and Be need to have #mctions,
and Na and Mg need 3pnctions added to thieasis set in order to prevent
the compounds frorhecoming todonic. Likewise,elements in the second-
row and heavier main group elemeitsthe Periodic Table need d-type
functionsadded to the basis sdtor second-row elements, the split-valence
basis se3-21G*is used. The¢“*” in the nomenclature indicates that d-
type orbitals a¥ available foisecond-rowelements only.

The next shortcoming of a minimbhsisset, that the atomicorbitals are
atom centered, must now be resolvethis could be resolvedy adding
functionsthat are off-centerefilom the nuclei. This is adangerous solution
however, because it becomessy tobias the result. Aetter approacrs to
continue on the philosophihat moreatomic orbitalfunctions in the sum
improve the result. The solution is to add p-tfypections orhydrogen and
d-type functions onmain-group heavy atoms thaitow thedisplacement of
the electron density away from tineiclearpositions. Thesgypes of basis
sets are called polarization basiets Examples of polarization basis sets
include 6-31G* and 6-31G**. In &6-31G* lasisset, d-type orbitals are
added to heavy main grogtements. In &-31G** basisset,p-type orbitals

are added to hydrogen alomgth the d-typeorbitals in heavy main group
elements.
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4 ‘ “comglem” cxact non-relatiaistic
BT 00 bassis set t solutiom
*"‘"—"""'-—\_.—'-"’I_

Bans
functions

na separabion of
F electron mptmns

L

number of conlfiguration state fenetiong

Figure 9-7. The spproach bo an exac dsolution of 2 system with multuple electrons a5
the number of bass functions and & the conflgurstion state fusctions is increased is
depicted in this dagrarm

The result froma HF-SCF-LCAOcomputation includes information on
the equilibrium geometry of thenolecule in additionto thermodynamic
information such as totanergy ofthe moleculeheats of formation, and
bond dissociation energy. The results ebme HF-SCF-LCAO
computations arghown in Tables 9-4 and 9-5.

Increasingly larger basis sets canbe used in HF-SCF-LCAO
computations at thexpense otomputation time; however, th@31G**
basis set represents a practical limit fhese typesf computationson
medium sized molecules. This is because the HF approximation of
separation of electron motion becomesreasinglymore important. As
seen inTable 9-5, thedissociationenergy obtainedfrom HF-SCF-LCAO
computations is not vergood relative texerimentavalues. The problem
is due to electroorrelation. To gairsomeunderstanding of the correlation
problem, consider the ground-state dfedium atom. Botlelectrons are in
the 1s state. Since the electrons refiedy tendto stay away from each
other. If one electron is close the nucleus at given instant, it is
energeticallymore favorable for the otheelectron to be far away from the
nucleus. The problemomes aboutecause the HF approximatisalves for
the wavefunction o& particularelectronwith respect to an average charge
distribution from theother electronswithout allowing for instantaneous
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Table 6. The MP2 calculated geometdes for & number of different types of bands
usieg differest basis is shown  All bond distances are expressed in A Data obtamed
froen Waselunetion, lee. with permission

“hond_molecule MPZBIIG _ MPUG3II-GaLp) _expeniment
C-C bul=] -yne-3-gns 1424 1429 1.431
propyme 1 463 | 463 1459
1,3 butadsene 1 458 1. 456 1.48%
Propens 14594 1.495 1.501
cycloprapane 1.504 1.508 1.51a
propane 15285 1.526 |.526
cychabutans 1.545 1.549 1.548
C=C  eyvclopropens 1.303 1.1499 13048
gliene 1.313 1.310 | A0d
propen 1.33% 1.336 304
cyclobutens 1.347 1.344 1.332
but-1-yme-3-tne 1.244 1.342 1341
1, 3-burindiene 1 344 1.342 1345
cyclopentadizne 1.354 1.354 1345
C=0 propyme 1240 1.214 1306
but-1-me-3-ene .22} 1.217 |.208
C.0d formmic acid 1351 1 ks 1.343
dirmethyl ether | 4Lh L4145 L480
C=3  formde acid 1214 [.205 [.302
Tormaldehde 1221 1213 L3208
AcEhE 1.228 1.220 1.2IZ

adjustment ofhat particularelectron’strajectories as &sult of the other
electrons. The approximation of separation of electron motion can be
relaxed by usingorrelated models. The effect ofireasing the number of
functionsadded to the LCAO and thielaxation of theHF approximation of
electron separation to the trweavefunction of amulti-electron system is
shown diagramatically inFigure 9-7. To correct the electron correlation
problem, there are twadifferent correlated models: Configuration
Interaction (CI) and Moller-Plesset (MPn) methods.

In the CI methods, the electronorrelation is considerdaly taking a linear
combination of theHF ground-state wa¥enction with a large number of
excitedconfigurations. Theexpansiorcoefficients are thewmaried using a
Variational approachintil a minimum energy isachieved. Sinceexcited
configurationshave a large percentage of their probabiignsity far away
from the nuclei, convergence islow andlarge numbersf configurations
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Table -7, Bond dissociation energy (HX = H' + X' is shown calculated wsing MP2
with different basas seds.  All values are expressed in kcalimol. Daa obtamed from
Wavefunction, Inc. wilh permissacn

HX  MP26-31G* MPLi6-311+G(2d.p) experimental
CH, 456 426 426
MH; EES 412 409
H:O 435 Jag 10H
C.H. 41 182 181
i, AB6 182 TR
HF 411 34 i7h
FH, 183 375 e
Hy5 63 ERLi 338
HICM 374 335 LR
HCL 339 335 337

must be included. In practical @Giethodstransitions of ol the electrons
in the highest occupied molecular orbitellOMO) to the lowestunoccupied
molecularorbital (LUMO) areconsidered. Thivel towhich this isdone is
prescribed by the particular methdaosen. Some thecommon oneinclude

the following: Configuration Interaction Single excitations (CISynly,

Configuration Interaction Double excitations (CID) only, and

Configuration Interaction Single and Double excitations (CISDhly.

The Moller-Plesseimethod uses perturbationtheory to caect for the
electron correlation in a many-electrsystem. TheVoller-Plesset method
has the advantage thdtis a computationallyfaster approachthan CI
computationshowever, thalisadvantage is thatig notVariational. A non-
Variational result is not, in generan upper bound of thieue ground-state
energy. In theMoller-Plesset method, theero-ordeiHamiltonian isdefined
as the sum of all th&l one-electron Harte-FockHamiltonians, B, as
given in Equation9-30.

JI'-II['I I:iglﬂr [941}
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The first-order perturbation is theifference between th zero-order
Hamiltonian inEquation9-42 and the electronidamiltonian in Equation 9-
27.

Flr[l'l =Hl'ﬂ-ﬂm: _};rlﬂ'l iE}-i?!I'

The Hartree-Fockground-statewavefunction (Equation 9-29),y™, is an
eigenfunction of thedartree-Fockdamiltonian, # , with an eigenvalue of
E® (the sum of theorbital energies oéll the occupiedspin-orbitals). The
HF energy associated withe normalizedyround-state Hrvavefunction is
the followingexpectatiorvalue.

Eur = 7y =l [ b o [
= Elﬂr - E-:n

R } [.944}

Hence, the HF energy is tkem of thezero andirst-orderenergy. Theirst
correction to the ground-state energyth# system as resultof electron
correlation is given bgecond-order perturthan theory.

iy {'P':".F iﬁrllrlw:gr :{'.l‘".;w Illr_'lrluillk..;-'-"::l
v _.‘:I El;nl _E_I

(=1%)

A Moller-Plessetcomputation to asecond-ordeenergycorrection iscalled
an MP2 computation, and higher-order energy corrections are called MP3
MP4, and so on.

Someresultsfrom MP2 computations are shown in Tables 9-6 8nd
As can be seen iMable 9-6, the bond distances obtained from MP2
computations, in general,eain good agreememtith experiment; however,
the bond distances in multiple bonslsch asC=C an@€=C are not geod
compared taexperiment as othenethodssuch as HF-LCAO-SCF. There is
howeversignificantimprovement in thermodynamic quantitiesch as bond
dissociation energies. The masgnificant advantage of usingorrelated
models is to obtaireliablethermodynamidnformation.
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95 SEMI-EMPIRICAL METHODS

The ab initio methodsgspeciallywhen including electron correlation, are
computationallyintensive. This limits their ability tohandle large sized
molecules. Semi-empirical methods provide ameans for obtaining
computational resultfor large sized molecules andnorganic molecules
including transitionstate elements. Semi-empirical methods employ some
of the sameelements asb initio computations except some integrals are
ignored and replaced witharameters to reproduce experimental results.
Semi-empirical methods can be thought of as a blend ofkhenitio
methods and molecular mechanics.

Semi-empiricalmodels begin with the HF andLCAO approximations
resulting in the Roothaan-Hall equations (Equations €B&ugh 9-40). A
minimal basis set is used 8TO’s. TheRoothaan-Halkquations arsolved
in a self-consisterfield fashion, however not all of the integrals are actually
solved. In themost severeapproximation, there i€omplete neglect of
differential overlap (CNDO)

5, =ie |m

In the CNDOapproximation, thevalue of this integrals taken to bezero

even when dferentatomic orbitals belong to theame atom.The surviving

integralsfrom the Roothaan-Hall equations amdten taken agparameters
with values that ar@adjusted until theesults from theCNDO computation

resemble those of Hartree-Fock S@inimal basis setomputations. Less

severe truncations have been developed -calletbdified neglect of
differential overlap (MNDO) In MNDO, only the differential overlap is
ignored when the basfsinctionsbelong todifferent atoms. Several other
improvements have been madate packages that includ&ustin Model 1

(AM1) and PM3.

The values of the parameters usedemi-empiricacomputations, so that
their results agree with experiment and that of HF-SCF-LCAO computations
with minimal basissets, must come from either experimentavalues or
computationalvaluesmuchlike in the case amolecular mechanics. As a
consequence, caraust be taken to ugbesepackages only for the type of
molecules for which th@ackages have been parameterized. NINDO
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Table 9-8. Bond distances calculated using AMI and PM3 semi-empirical methods,
All bond distances are in A, Data obtained from Wavefunction, Inc. with permission

bond  mwlecule AW FM3 eRpEnment
C-C  buf-1-yne-3-cre 1.405 L4l4 1431
pFOQIATIE 1427 1432 1.45%
1 3-baadiene 1451 1456 1483
propene 1476 1480 1.301
cyclopropane 1.501 1454 L350
propane 1.507 1512 1526
oy hobudamee 1.543 1.542 I.548
C=C  oyclopropens I.308 L3014 300
aliens 1.298 1397 1.308
propene 1.3310 1.328 1.31%8
cyclohuiene 1.354 1340 1.332
but- 1-yne-3-zne 1.336 1312 1.341
I 3-butadicne 1.335 1.33] 1.345
C=C propyme 1.197 1191 |20
but- |-yne-3-ene L.I9% L% |.208
C-0 foemic acid 1.357 1.4 1243
dimethyl| ether 1.417 1,406 14110
e} formic acid 1230 1.211 1202
Tormaldehyde 1227 1.20& 1.208
asctone 1235 1.2Z17 1.222

and AM1 models have been parameterized primarily for organic molecules.
The PM3 model habeen parameterized for orgammlecules anatertain
transition metaldisted below.

Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Zr, Mo, Ru, Rh, Pd, Cd, Hf, Ta, W, Hg

The parameters foMNDO, AM1, and PM3 have been parameterized to
reproduce experimental equilibriugeometries and heatd formation of
organiccompounds. Thparameters for the PM3 model on transition metals
have been determinedolely on thebasis of reproducing equilibrium
geometries ofransition metalinorganic compounds anorganometallics.
The lack of PM3 parameterizatido reproducehermochemical information
about transitionmetal inorganics and organometallics is as a result of a
general lack athermochemical idrmation on theseompounds.
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Tble &9 Bend dissociation emergy (HX — H" + X1 is shown caloubated usmg AM
amd PMY semi-empirical methods. All valwes &re expressed i keal'mol. Data obtained
from Wavefunction, Inc. wilh permassion.

_ HX AMI PA3 experimental
CHy 434 413 424
M, 427 £0K A0
Ha(s 4]z 403 J9E
CyHy 401 392 351
SH, 51 153 L)
HF 445 399 376
PH, 347 142 376
HS 180 162 358
HCM 354 347 59
HCI 354 336 137

Resultsfrom semi-empirical computations askown in Tables 9-8 and 9-
9. The geometricainformation from these computations is in good
agreement with experimehtanformation; however, the thermochemical
information, in general, is not ingood agreement. Semi-empirical
thermochemicalcomputational data igenerally notaccurate enough for
absolute valuediowever, itis useful for @mparison purposes to explain or
predict trends.

9.6 DENSITY FUNCTIONAL METHODS

All ab initio methods start wita Hartree-FockHF) approximation that
result in thespin orbitals, and then electron correlatigrtakeninto account.
Though theresults of sue calculations areeliable, themajor disadvantage
is that they are computationally intensiaed cannot beeadily gplied to
large molecules of interestDensity functional (DF) methods provide an
alternativeroute that, ingeneral, provide results comparable to Cl and MP2
computationatesults; however, thdifference isthat DF computations can
be done on moleculegith 100 or more heavagtoms.
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Table #-/0. Boed distances calculaled using densaty fusctional methods. ALl Bond
distances are in A Data obiained from Wavefunction, Ine with permdesian.

bond  molecule SVWDMNDN®  pBRDN*  pBPNDN*  experiment
C-C  but-1-yne-3-ene |40 1422 |.422 1.431
[l bt 1.438 1456 |.456 1.45%
1 3-butadiene 1.437 1455 |.456 1.483
propens .47 1.3 1500 1.501
cyclopropane 1493 1504 1541 L4510
propans 1508 338 1541 1326
oyc lobutane 1.538 1.556 |- 558 1.54K
C=C  gyclopropene 1242 1.5060 1-3@1 | 30
albene 1.303 1.503 1.313 1 308
propeng 1.330 1.342 1.343 1.3EE
cyelobutens 1.340 L3449 L350 1332
bl 1 -ymiz-3-ene 1.33E 1350 1.351 1341
1 3-butadvene 1.338 1344 1. 350 1 345
CmlC  propme 1.210 1216 1.217 1 206
but-1-yne-3-ene 1.213 1.220 1220 1208
C-0  formie ackd 1.336 1354 1359 1.343
dimethy| ether 1.383 1424 1426 Ldln
C=0 formic acid 1202 1.211 1.212 1202
formaldehyde 1.203 1.212 1.213 1.204
acetons 213 1.224 |.244 1.122

In HF models, the computation begingh an exact Hamiltonian but an
approximatewavefunctionwritten as a product abne-electronfunctions.
The solution ismproved by optimizinghe one-electrofunctions(the value
and number ofoefficients in the,CAO approximation) and by increasing
the flexibility of thefinal wavefunctionrepresentation (electrarorrelation).
By contrast, DF models stawith a Hamiltoniancorresponding to an
“idealized” many-electronsystem forwhich an exact wavefunction is
known. Thesolution is obtained bgptimizing the “ideal” systeraloser and
closer to theeal system.

In HF models, the energy of the systeRBY’, (see Equation9-34) is
written as follows.

EMI- - E.-w + Fu—"-.ir + Ei.‘ll.hnb- _._Eﬂ"*"-l-" Eg—d-fl}
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Table 9-1). Hydrogenaton energies for a sumber of differest organic resctions
calculated wsing denssty functional methods are shown, Al energies are expressed in
kca¥mol. s abtained from Wavefusction, Ine. with pemission

reaction SVYDNDN*  pBRIIN®  pBRIIN®Y  espeniméent
CiHg + Hy = 2CH, -16 -1% -1% -19
CHNHs = Hg =+ CHy = NH, -1 =24 27 -2
CH,OH + Hy =+ CHy + HiD = -2 =3 =30
CH,F + Hs =& CH, # HF -2 =25 -4 =24
F:|_"‘H_' =5 THF «| 2 =1 04 ] -133
CsHg 4 Hs =» Z2CHy =¥} 57 -58 -7
CsHa + 3Hy — FCH, =126 -107 -1 -1 03

The £~ is the energy of the single electnwith the nucleus. Th&™

energy is the repulsion between thelei for agivennuclear configuration.
The termE“™ s theenergy of repulsion betweehe electrons.The last
term, E****¥°, takes the spin-correlation inkwcount. In DFmodels, the
energy of the system isomprised of thesame corenuclear, andCoulomb

parts,but theexchange energy alongith the correlationenergy,ExAp), is
accounted for in terms offanction of theelectron densitynatrix, p(r).

E™ = BB 4 Bt gT L B8] £337)
In the simplest approach, called local density functional thedng

exchange and correlation energy ardedfeined as an integral gfome
function ofthe totalelectrondensity.

Ep =i pirke o Loirihdr (94}
The electron density matrix, p(r), is determined from theKohn-Sham

orbitals, y;, as given in thdollowing expression for asystemwith N
electrons.

N 1
pie = glv.l [5-40}
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The term &y A{pit)] is the exchange-correlation energy per electron in a
homogeneous electron gas of constant density.

The Kohn-Shamwavefunctions araleterminedfrom the Kohn-Sham
equations The following expression is for a system of N-electrons.

26 b

P S ! HIEL 4V i =ru ) (9450)

The termsg; are the Kohn-Sham orbealergies. Theorrelation exchange
potential, ¥y, isthe functional derivative of the exchange-correlation
energy.

A [ 2]

451
5 {9-51}

wlal=

If Exc isknown,then Vy- can be computed.

The Kohn-Sham equations aselved in aself-consistent field fashion.
Initially a charge densitis needed so thdyc can be computed. Tabtain
the charge density, an initigguess” to thekohn-Shamorbitals isneeded.
This initial guess can bebtained from a set of basisnctionswhereby the
coefficients ofexpansion of the basfanctions can beptimizedjust like in
the HF method. From thieinction ofEx- interms of the density, the term
Vxc is computed. Th&ohn-ShamequationgEquation 9-50) are then solved
to obtain an improved set &ohn-Sham orbitals. The improved set of
Kohn-Sham orbitals is then useddalculate aetter density. This iterative
process is repeataghtil the exchange-correlation energy and the density
converge to withirsometolerance.

A common type of local density functional Hamiltonian is 8\MWN.
The local densityfunctional theory represents severeapproximation for
molecular systems since it ssumes auniform total electron density
throughout the moleculaystem. Other approachbave beerdeveloped
that account for variation in totablensity (non-local densityunctional
theory). This is doneby having thefunctions depend explicitly on the
gradient of the density in addition to the density itself. An example of a
densityfunctional Hamiltonian that takes thidensity gradient into account
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is pBP. Some computational results foSVWN (linear) and pBP(non-
linear) computations agiven inTables9-10 and9-11.

9.7 COMPUTATIONAL STRATEGIES

The purpose of this sectias to help a chemisthoose arappropriate
molecular mechanics or electronistructure computational strategy for
solving a chemical problem of interest. The elements that go into making
such a decision have to do with the reliability of the desired pyopeetded
and the mostamputationallyefficient approach. The relative reliability of
results from various methodisr organic compounds shown in Tabl®-12.
The relative reliabilitiesof various methods for inorganic compounds,
organometallic compoundsind transitionstate structures are difficult to
assess due to the lack of experimental data. The typefwohation that
can be obtainedrom computations ommolecules include equilibrium
geometry, geometrypf transition state structures,vibrational frequencies,
and thermochemistry.

In terms of findingequilibrium geometries of compoundsyen very
simple computations such asemi-empirical and smabasis setab initio
computational methods provid@od geometries aompared texperiment.
As a consequence, it Blmost always advantageotes use these simple
computations as a starting pointhigher-levelcomputations such darge
basis set ab initioCl, or MP2 computational methods. If equilibrium
geometries are desired for large molecules or biopolymeranthecular

Table 212 The comparative performances of mobecular mecharics and electronic
structure methods for orgamc compaunds are shown for comparisen. Table adopted from
Wavefunction, Inc. with permission

maleculas SEmi- loca]l  man-loecal
task mechanses  HF MFP2  empincal OF LF
geametry A G G [ & i
transilion state geometry - G G G G G
conformmation T AL G P AG 3
thirmischemisry . A G P A G

G = good A = mcoeptable F = poar AMD = aceptable to goed
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mechanics techniques are the lobsiice. It ismportant to realize that all of

the methods discussedtinis chapter are fagas-phasenolecules.There are

no terms in the Hamiltonians for solvent effects. If the equilibrium geometry
of a compound is desired in the presence of a solvent, there are practical
semi-empirical models available such/dd1-SM2. However, even at the
semi-empirical levelsolution phaseomputations are formidable.

An important question that needs be askeds how accurate of an
equilibrium geometry is needed. A veagcurate result is needed fmrtain
desired properties that are sensitiwehe equilibriumgeometry. Examples
of properties that have a higlegree of sensitivity to equilibriugeometry
includedipole moments and vibrationfiequencycalculations. The model
for calculating vibrationafrequencies ssumeghat the firstderivatives with
respect to nuclear positionare rigorously equal taero. Equilbrium
geometries from high-level computations should be used in order to obtain
these types of properties.

Transition stategeometries are inherently modéficult to locate than
equilibrium geometries ofnolecules. The potenti@nergysurfacealong a
transition state structurés somewhaflat rather than a steep minimum as
found in anequilibrium geometry. As asalt, smallchanges irenergy for a
transition statestructure can result itarge changes in geometrySince
transition states involve bondormation and breaking, lovevel
computations may not lead to acceptable reshtigiever, it isbest to start
with a low-level computation (i.e. moleculanechanics osemi-empirical)
as a startingoint for a higher-level computation. The vibratiofraljuency
for the transition statstructureshould becomputed. The structure should
yield only one imginary frequency in theange of${-2004 em™ that is
typical of normal frequencies. Very small imaginaryfrequencies ok100
cm™ probably do not correspond to theaction coordinatef interest. An
additional check that can be done is animation if the software being used will
produce it. The animation can be dide see if the imaginary frequency
smoothly connects theactants to products.

In terms of thermochemistry, it lsest to writereactionswith the least
number of bonds forming and breaking. pdisible, the reaction of interest
should be written in terms oafodesmic reactions (reactions where the
reactants and products have teame number ofeach kind of formal
chemical bond). Arimportantquestion to ask is if an absolutaergy is
important or if a comparison betwedifferent chemicalspecies wil allow
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for a particular trend to be deducedhough, as shown in Table 9-12at
semi-empirical computations in general vyield poor thermochemical
information, thethermochemical data obtaindcbm these semi-empirical
computations can be useaiccessfully todeducetrends such asproton
affinities and acidities. Since thermochemical properties do depend on
equilibrium geometry high-level computations in general are needed for
absolute thermochemicaiformation.

The computational strategy in general has a common theme. wittart
low-level computations forn somewhabptimized guilibrium geometry and
then re-submit theptimized geometry into a higher-levamputation. The
nomenclatureised to describe @mputational route igiven asfollows.

levalbazis ser levelbamis se
I | 1 |
i:m:rg}r 0T Eﬂ'll'l!tl'l’_‘.-
property

The level corresponds to thgpe of computation usesuch asHF, MP2,
AM1, and so on. Théasis set corresponds$30-3G,3-21G,6-31G*, and
SO on.

PROBLEMS AND EXERCISES

9.1) Make a plot ofthes and* wavefunctionsaH,” molecule agjiven
in Equations 9-23 and 9-24Relate the distancdsom the respective
nuclei, r, andrg, interms of a noleardistance R. Makelots of the
wavefunctions for differentalues of R from the value of 0.5 800

A.

9.2) Write out the molecular orbitalsthat areformed from theatomic
orbitals in theHF-SCF-LCAOapproximation ohitrogen monoxide in
a diagranlike thatshown for carbon monoxide in Figudes.

9.3) Using simple MO theory, predict the boratder for thefollowing
molecules: a$;, ©S,", a¥,, &,", &, andh.
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9.4) In a HF-SCF-LCAOcomputation on methyl chlorideletermine the
number offunctions in the followingoasis sets: aninimum, b) 6-
31G,c) 6-31G*, and dB-31G**.

9.5) Determine which of thdollowing electronic structure computational
methods can possibly yéla ground-stateenergy belowthe true
ground-state energy: a) HF-SCF-LCAO, fo)l CI, c¢) MP2, and d)
pBP. Be sure tstify your answer.

9.6) Explicitly showthat a product of twe-type GTO’s one centeredrat
with an eponent ok, and the other centeredgaivith an exponent
ap can be expressed as a sinfylaction centeredbetween points A
and B.

9.7) One method for obtaining heats of formation of compounds is to
combine computational borskparation datavith experimentaldata.
Determine how yowvould determine the heaff formation of methyl
hydrazine from ta calculatedbond separationenergy for methyl
hydrazine,

CILNHNI, + NH, — CILNH; + WHoNH,,
and the experimental heats dbrmation data for ammonia,

methylamine, and hydrazine. Is the abaguation for thebond
separation of nthyl hydrazine isodesmic?
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Table of Physical Constants

Speed ofight
Elementarycharge
Planck’s constant

Boltzmann's constant
Avogadro’s constant
Electron rest mass
Proton rest mass
Neutronrest mass
Vacuum permittivity

Bohr magneton
Bohr radius
Rydberg constant
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FAGT0R5 8 10 s
VA2 % 107
AEIRIE x 10 T g
105459 = 1" I

| 3EHE = 1 T KT
&.02205 x 107 mal?
210953 2 (0" kg
167265 & L0 kg
167495 0 10 wy
ARS4IRE WY IO !
Lnzests 10" G om!
9274k 10 1T
529177 2 10" m
20179%% 2 10" )
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Table of Energy Conversion Factors

Lerg = L07]

lcat=4.1847

eV - 1A021T7 x 107 ) = 1602177 = 10"
| hartree = 438958 5 107" 0 =272 (A ¢V

L rpdberg = 142 narres
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Table of Common Operators

position g i
time F r
T
momentum B s
L od
o - .
kinetic energy F¥ v
2

del squared e
E! EJ E!

Canesian coordinates — =t
= - Ca]

. . e
sphencal coordinates - —rFt|< A
rodet g A
_ Co & I R PR
legendrian Al - ]I ]+ [-_ B f .
g Lsm'E | A I'I:E.Inlfl'__.- f-ﬂ,]sn y A8
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AM1-SM2, 256

antitunneling.See nonclassical scattering
atomicorbital (AO), 179

atomicunits, 180

Austin Model 1(AM1), 249

basis setSee wavefunction

Bohr magnetorgefined, 209

bond order, 230
Born-Oppenheimespproximation, 223

center of mass detaination, 156
centrifugal distation constant, 135
classical mechanics
Hamiltonianmechanics, 3-4
Newtonianmechanics, 1
combination transitions, 174
complete neglect dfifferentialoverlap
(CNDO), 249
configurationinteraction, 196
Configurationlinteraction (Cl), 246
conservativesystem, 2
correlated models, 246
correlation problemSee Hartree-Fock
self-consistent fiel (HF-SCF)
Correspondence Principle, 15
Coulombintegral,molecular, 226

de Broglie wavelength, 14
degeneracy
definition, 34
Particle-on-a-Ring, 40
Particle-on-a-Sphere, 46
densityfunctional(DF)
description, 251
Kohn-Sham equations, 254
Kohn-Shamorbitals, 253
local densityfunctional theory, 253
density ofstates, 172
dipole moment, determination, 172
Dirac notation, 28
dissociation energy, 131

effectivenuclearcharge, 196, 201
eigenfunction, definition, 17
eigenvaluedefinition, 17
electromagnetic spectrum, 114
electron density, 189
electronspin, 199
electronic magnetic dipole

intrinsic spin, 208

orbital angulamomentum, 208
energy

first-order correctionSee Perturbation

theory
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photon, 115
second-order correctioisee
Perturbation theory
expectation value, 28

force field, 170
free particle, 96-98
fundamentatransitions, 174

Gaussian-type orbitals (GTO), 241

Hamiltonian
classical, 3
guantummechanical, 18
harmonicoscillator
center-of-mass coordinates, 9
classicalb—12
guantum mechanica85-95
hartree, 180
Hartree-Fockself-consistenfield (HF-
SCF),204, 236,237
central-fieldapproximation, 206
coreHamiltonian, 205, 237
correlation problem207, 246
Coulomb operator, 237
exchange operator, 237
Fock matrix, 239
orbitals, 204
overlap matrix, 239
HeisenberdJncertainty Principle, 30
heliumatom
energy fromperturbatiortheory, 196
experimental energy, 194
Hamiltonian, 191
Hermite polynomials
recursionrelationship, 86
table, 87
Hooke's law, 5, 85, 233
hot bands, 175
Hund's rules, 215
hydrogenatom
emission spectra, 218
energy eigenvalues, 181
radial functions, 181
selectionrules, 217
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infrared spectrum ohydrogenchloride,
122

infrared spectrum of OCS, 153

infrared spectrum of water (idealized),
175

internalcoordinates, 169

internalmodes of rotation, 165

isodesmigeactions, 256

Legendrepolynomials
recursionrelationship, 44
table, 46

Leguerre polynomials, 181

linear combination of atomic orbitals
(LCAO), 225, 238

magneticquanturmumber, 210
Maxwell-Boltzmanndistribution law, 123
minimal basis seiSee wavefunction
MMFF. See molecular mechanics
modified neglect oflifferential overlap

(MNDO), 249
molecular mechanics

MMFF, 233

SYBYL, 233
molecular orbitals (MO)

defined, 223
moleculampartitionfunction, 123
molecular potential energy curve, 223
Moller-Plesset (MPn), 246
moment ofnertia

linear polyatomic molecules, 151
Morsepotential, 128

nonclassicalscattering,98-105
non-conservativeystem, 2
normal coordinates, 170

observabledefinition, 17
OCS Rotational Constant, table, 153
operator
angular momenturaquared, 50
definition, 17
del squared, 43
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hermitian, 27

kinetic, 18

legendrian, 43

momentum, 18

position, 18

time, 140

x-angularmomentum, 49

y-angular momentum, 49

z-angular momentum, 40, 49
overlapintegrals, 227
overtondransitions, 174

Particle-in-a-Box
1-dimensionaR0-26
3-dimensionaB3-35

Particle-on-a-Ring37—42

Particle-on-a-Sphere, 42-52

Pauli principle, 200230, 236

P-branch, 121

Perturbation theory
degenerate76-82
He atom, 192
non-degeneraté0—76
time-dependent, 142

PM3, 249

polarization basiset. See wavefunction

Postulates of QuantuiMechanics, 17,
18, 28

potential energgurface, 223

principal inertialaxis system, 158

principal momentsof inertia
asymmetric top, 160
expressions, 158
nearoblate, 162
near prolate, 162
near prolate, table, 162
oblatesymmetric top, 159
oblate table, 161
prolate symmetric top, 159
prolate, table, 160
spherical top, 160

Ray's asymmetry parameter, 161
R-branch, 121

resonancéntegral, 226

RHF, 240

Index

rigid rotor harmonic oscillator

approximation, 119
Roothaan-Hakquations, 239
rotationakonstant, 119
rotationalenergy levels

oblate, 164

prolate, 164
Russell-Saunder&ee term symbols
Rydberg constant, 218
rydbergs, 180

scattering resonances, 103
Schroedingeequation, 18
time cependent, 140
two-body radial,116, 178
secular equation, 79, 227
selectionrules
allowed, 144
diatomic molecules, 147
forbidden, 144
hydrogeratom, 217
multi-electronatoms, 219
rotational, symmetric top, 165
vibrational,polyatomic, 174
self-consistentield (SCF), 204
separable, 2
shell, 212
Slater-type dritals (STO),201, 241
spectroscopic constants
defined, 138
table, diatomics, 139
spherical harmonics, 45
spin. See electron spin
spin-orbit interaction, 210
spin-orbit splitting, 211
split-valence basis sebee wavefunction
subshell, 212
substitution structure, 154
SYBYL. See molecular mechanics

termsymbols, 215

tunneling, 10511

two-body radialSchroedingeequation.
See Schroedingequation

UHF, 240
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basis setsplit-valence, 242

Variation theory, 54—60 Born interpretation, 19
He atom, 196 first-order correctionSee Perturbation
Variational theory theory
He atom, 202 normalization, 20
multi-electron toms, 226 orthogonal, 29
vibrationalconstant, 119 orthonormal, 29
vibration-rotationcouplingconstant, 136 probabilitydensity, 19
properties, 20
wavefunction trial. See Variation theory
basisset, 60, 201, 225, 238, 241
basisset, minimal,225, 241 Zeemareffect, 209

basis setpolarization, 244



